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OVERVIEW OF THE COURSE

• Symplectic manifolds

• Poisson manifolds

• Lie group actions

• Abstract symmetry reduction



• Cotangent bundle reduction

• Lagrangian approach to reduction

• Conservation laws via generalized

distributions

• The optimal momentum map and

groupoids

• Optimal reduction



• Singular point reduction

• Singular orbit reduction

• Poisson reduction

• Coisotropic reduction

• Cosymplectic reduction



SYMPLECTIC MANIFOLDS

A symplectic manifold is a pair (M, ω), where M is

a manifold and ω ∈ Ω2(M) is a closed non–degenerate

two–form on M , that is,

• dω = 0

• for every m ∈M , the map

v ∈ TmM 7→ ω(m)(v, ·) ∈ T ∗mM

is a linear isomorphism.



If ω is allowed to be degenerate, (M, ω) is called a

presymplectic manifold. A Hamiltonian dynamical

system is a triple (M, ω, h), where (M, ω) is a symplectic

manifold and h ∈ C∞(M) is the Hamiltonian function

of the system. By non–degeneracy of the symplectic

form ω, to each Hamiltonian system one can associate

a Hamiltonian vector field Xh ∈ X(M), defined by the

equality

iXhω := ω(Xh, ·) = dh.



Example V vector space, V ∗ its dual. Let Z = V × V ∗.

The canonical symplectic form Ω on Z is defined by

Ω((v1, α1), (v2, α2)) := 〈α2, v1〉 − 〈α1, v2〉.

[Ω] =

 0 1
−1 0

 =: J

Example Q manifold, T ∗Q its cotangent bundle, πQ :

T ∗Q → Q projection. The canonical one-form Θ on

T ∗Q defined by

Θ(β) · vβ :=
〈
β, TβπQ

(
vβ
)〉
, β ∈ T ∗Q, vβ ∈ Tβ(T ∗Q).

In canonical coordinates Θ = pidq
i



The canonical symplectic form Ω on the cotangent

bundle T ∗Q is defined by Ω = −dΘ.

Darboux theorem: Locally ω|U =
∑n
i=1 dqi ∧ dpi.

In canonical coordinates, Xh is determined by the well-

known Hamilton equations,

dqi

dt
=

∂h

∂pi
,

dpi
dt

= −
∂h

∂qi
.

The Poisson bracket of f, g ∈ C∞(M) is the function

{f, g} ∈ C∞(M) defined by

{f, g}(z) = ω(z)
(
Xf(z), Xg(z)

)
.



In canonical coordinates, the Poisson bracket has the

form

{f, g} =
n∑
i=1

∂f
∂qi

∂g

∂pi
−
∂g

∂qi
∂f

∂pi

 .



POISSON MANIFOLDS

• (M, {·, ·}) Poisson manifold if (C∞(M), {·, ·}) Lie al-

gebra such that

{fg, h} = f{g, h}+ g{f, h}

• Casimir functions are the elements of the center of

(C∞(M), {·, ·}).

• Hamiltonian vector field of h ∈ C∞(M)

£Xh
f := 〈df,Xh〉 := Xh[f ] = {f, h}, for all f ∈ C∞(M).



Example: The Lie-Poisson bracket. The dual g∗ of

a Lie algebra g is a Poisson manifold with respect to the

±-Lie–Poisson brackets {·, ·}± defined by

{f, g}±(µ) := ±
〈
µ,

δf
δµ
,
δg

δµ

〉 ,
where δf

δµ ∈ g is defined by

〈
ν,
δf

δµ

〉
:= Df(µ) · ν,

for any ν ∈ g∗. The Hamiltonian vector field of h ∈

C∞(g∗) (ḟ = {f, h} ⇔ Xh = {·, f}) is given by

Xh(µ) = ∓ad∗δh/δµµ, µ ∈ g∗.



Example: Frozen Lie-Poisson bracket. Same no-

tations as before. Let ν ∈ g∗ and define the frozen

Lie–Poisson brackets {·, ·}± defined by

{f, g}ν±(µ) := ±
〈
ν,

δf
δµ
,
δg

δµ

〉 .
The Hamiltonian vector field of h ∈ C∞(g∗) is given by

Xh(µ) = ∓ad∗δh/δµν, µ ∈ g∗.

The Lie-Poisson and frozen Lie-Poisson bracket are com-

patible, that is, { , }±+ s{ , }ν± is also a Poisson bracket

on g∗ for any ν ∈ g∗ and any s ∈ R.



Example: Operator Algebra Brackets. H be a com-

plex Hilbert space.

• S(H), trace class operators

• HS(H), Hilbert-Schmidt operators

• K(H), compact operators

• B(H), bounded operators

They form involutive Banach algebras. S(H), HS(H),

K(H) are self adjoint ideals in B(H).



S(H) ⊂ HS(H) ⊂ K(H) ⊂ B(H)

K(H)∗ ∼= S(H), HS(H)∗ ∼= HS(H), S(H)∗ ∼= B(H);

the right hand sides are all Banach Lie algebras. These

dualities are implemented by the strongly nondegenerate

pairing

〈x, ρ〉 = trace (xρ)

where x ∈ S(H), ρ ∈ K(H) for the first isomorphism,

ρ, x ∈ HS(H) for the second isomorphism, and x ∈ B(H),

ρ ∈ S(H) for the third isomorphism.



The Banach spaces S(H), HS(H), and K(H) are Ba-

nach Lie-Poisson spaces in a rigorous functional analytic

sense. The Lie-Poisson bracket becomes in this case

{F,H}(ρ) = ± trace ([DF (ρ),DH(ρ)]ρ)

where ρ is an element of S(H), HS(H), or K(H), respec-

tively. The bracket [DF (ρ),DH(ρ)] denotes the commu-

tator bracket of operators. The Hamiltonian vector field

associated to H is given by

XH(ρ) = ±[DH(ρ), ρ].



The Poisson tensor. The derivation property of the

Poisson bracket implies that for any two functions f, g ∈

C∞(M), the value of the bracket {f, g}(z) on f only

through df(z) which allows us to define a contravariant

antisymmetric two-tensor B ∈ Λ2(M) by

B(z)(αz, βz) = {f, g}(z),

with df(z) = αz and dg(z) = βz. This tensor is called

the Poisson tensor of M . The vector bundle map B] :

T ∗M → TM naturally associated to B is defined by

B(z)(αz, βz) = 〈αz, B](βz)〉.



Its range D := B](T ∗M) ⊂ TM is called the character-

istic distribution. For any point m ∈M , the dimension

of D(m) as a vector subspace of TmM is called the rank

of the Poisson manifold (M, {·, ·}) at the point m.



The Weinstein coordinates of a Poisson manifold.

Let (M, {·, ·}) be a m–dimensional Poisson manifold and

z0 ∈ M a point where the rank of (M, {·, ·}) equals 2n,

0 ≤ 2n ≤ m. There exists a chart (U,ϕ) of M whose do-

main contains the point z0 and such that the associated

local coordinates, denoted by

(q1, . . . , qn, p1, . . . , pn, z
1, . . . , zm−2n),

satisfy

{qi, qj} = {pi, pj} = {qi, zk} = {pi, zk} = 0,

and {qi, pj} = δij, for all i, j, k, 1 ≤ i, j ≤ n, 1 ≤ k ≤ m−2n.



For all k, l, 1 ≤ k, l ≤ m−2n, the Poisson bracket {zk, zl}

is a function of the local coordinates z1, . . . , zm−2n exclu-

sively, and vanishes at z0. Hence, the restriction of the

bracket {·, ·} to the coordinates z1, . . . , zm−2n induces a

Poisson structure that is usually referred to as the trans-

verse Poisson structure of (M, {·, ·}) at m.

If the rank is equal to 2n in a neighborhood of z0, then

the transverse structure is zero.



A smooth mapping ϕ : (M1, {·, ·}1) → (M2, {·, ·}2) is

canonical or Poisson if for all g, h ∈ C∞(M2) we have

ϕ∗{g, h}2 = {ϕ∗g, ϕ∗g}1 .

In the symplectic category, ϕ : (M1, ω1) → (M2, ω2)

canonical or symplectic if

ϕ∗ω2 = ω1.

• Symplectic maps are immersions.



• A diffeomorphism ϕ : M1 → M2 between two sym-

plectic manifolds (M1, ω1) and (M2, ω2) is symplectic

if and only if it is Poisson.

• If the symplectic map ϕ : M1 → M2 is not a diffeo-

morphism it may not be a Poisson map.

• A diffeomorphism ϕ : T ∗S → T ∗Q preserves the canon-

ical one-forms ΘQ on T ∗Q and ΘS on T ∗S if and only

if ϕ is the cotangent lift T ∗f of some diffeomorphism

f : Q→ S.



Proof Suppose that f : Q → S is a diffeomorphism.

Then for β ∈ T ∗S and v ∈ Tβ(T ∗S) we have

((
T ∗f

)∗
ΘQ

)
(β) · v = ΘQ

(
T ∗f(β)

)
· TT ∗f(v)

=
〈
T ∗f(β),

(
TπQ ◦ TT ∗f

)
(v)

〉
=

〈
β, T (f ◦ πQ ◦ T ∗f)(v)

〉
= 〈β, TπS(v)〉

because f ◦ πQ ◦ T ∗f = πS.

Idea for the converse. Assume that ϕ∗ΘQ = ΘS, i.e.,

〈
ϕ(β), T (πQ ◦ ϕ)(v)

〉
= 〈β, TπS(v)〉 , ∀β ∈ T ∗S, v ∈ Tβ(T ∗S)



Since ϕ is a diffeomorphism, the range of Tβ(πQ ◦ ϕ)

is TπQ(ϕ(β))Q, so letting β = 0 ⇒ ϕ(0) = 0. Argue

similarly for ϕ−1 and conclude that ϕ restricted to the

zero section S of T ∗S is a diffeomorphism onto the zero

section Q of T ∗Q. Define f := ϕ−1|Q. Now one shows

that ϕ is fiber preserving, i.e., f ◦ πQ = πS ◦ϕ−1. This is

the main technical point. Then, using this, one shows

that ϕ = T ∗f . �

Classical coordinate proof of the first part. Write

(s1, . . . , sn) = f(q1, . . . , qn)



Since f : Q → S is diffeomorphism, we can solve qi =

qi(s1, . . . , sn). Coordinates on T ∗Q are (q1, . . . , qn, p1, . . . , pn)

and on T ∗S they are (s1, . . . , sn, r1, . . . , rn). So, both qi

and pj are functions of (s1, . . . , sn, r1, . . . , rn). The map

T ∗f is given by

T ∗f(s1, . . . , sn, r1, . . . , rn) = (q1, . . . , qn, p1, . . . , pn).

But then, locally,

(ΘS =)rids
i = ri

∂si

∂qk
dqk = pkdq

k
(
= (T ∗f)∗ΘQ

)



Let (S, {·, ·}S) and (M, {·, ·}M) be two Poisson mani-

folds such that S ⊂ M and the inclusion iS : S ↪→ M

is an immersion. (S, {·, ·}S) is a Poisson submanifold

of (M, {·, ·}M) if iS is a canonical map.

An immersed submanifold Q of M is called a quasi Pois-

son submanifold of (M, {·, ·}M) if for any q ∈ Q, any

open neighborhood U of q in M , and any f ∈ C∞M(U) we

have

Xf(iQ(q)) ∈ TqiQ(TqQ),

where iQ : Q ↪→M is the inclusion and Xf is the Hamilto-

nian vector field of f on U with respect to the restricted

Poisson bracket {·, ·}MU .



• On a quasi Poisson submanifold there is a unique Pois-

son structure that makes it into a Poisson submanifold.

• Any Poisson submanifold is quasi Poisson.



The converse is not true!

Counterexample. Let (M = R2, B) where

B(x, y) =

 0 y
−y 0


and (Q = R2, ωcan). The identity map id : Q → M

is obviously not a Poisson diffeomorphism because one

structure has leaves and the other is non-degenerate.

But is is also clear that any Hamiltonian vector field

relative to B is tangent to Q = R2 and hence (Q,ωcan)

is a quasi-Poisson submanifold of (M,B).



Given two symplectic manifolds (M,ω) and (S, ωS) such

that S ⊂M and the inclusion i : S ↪→M is an immersion,

the manifold (S, ωS) is a symplectic submanifold of

(M,ω) when i is a symplectic map.

Symplectic submanifolds of a symplectic manifold (M,ω)

are in general neither Poisson nor quasi Poisson mani-

folds of M .

The only quasi Poisson submanifolds of a symplectic

manifold are its open sets which are, in fact, Poisson

submanifolds.



Symplectic Foliation Theorem. Let (M, {·, ·}) be a

Poisson manifold and D the associated characteristic

distribution. D is a smooth and integrable generalized

distribution and its maximal integral leaves form a gener-

alized foliation decomposing M into initial submanifolds

L, each of which is symplectic with the unique sym-

plectic form that makes the inclusion i : L ↪→ M into

a Poisson map, that is, L is a Poisson submanifold of

(M, {·, ·}).



Example: Let g∗ with the Lie-Poisson structure. The

symplectic leaves of the Poisson manifolds (g∗, {·, ·}±)

coincide with the connected components of the orbits

of the elements in g∗ under the coadjoint action. In this

situation, the symplectic form for the leaves is given by

the Kostant–Kirillov–Souriau (KKS) or orbit sym-

plectic form

ω±O(ν)
(
− ad∗ξ ν, − ad∗η ν

)
= ±〈ν, [ξ, η]〉 .



• (M, {·, ·}) Poisson manifold. G acts canonically on

M when

Φ∗g{f, h} = {Φ∗gf, Φ∗gh}

for all g ∈ G.

• Easy Poisson reduction: (M, {·, ·}) Poisson manifold,

G Lie group acting canonically, freely, and properly

on M . The orbit space M/G is a Poisson manifold

with bracket

{f, g}M/G(π(m)) = {f ◦ π, g ◦ π}(m)



• Reduction of Hamiltonian dynamics: h ∈ C∞(M)G

reduces to h ∈ C∞(M/G) given by h◦π = h such that

Xh ◦ π = Tπ ◦Xh

• What about the symplectic leaves? This is where

symplectic reduction comes in.

• Lie-Poisson reduction: Left quotient (T ∗G)/G ∼=
g∗−. The map is: [αg] 7→ T ∗eRg(αg). Direct proof.

Discuss later. Notice that the quotient is for a left

action and the map is given by right translation. Will

be proved later.



LIE GROUP ACTIONS

M a manifold and G a Lie group. A left action of G on

M is a smooth mapping Φ : G×M →M such that

(i) Φ(e, z) = z, for all z ∈M and

(ii) Φ(g, Φ(h, z)) = Φ(gh, z) for all g, h ∈ G and z ∈M .

We will often write

g · z := Φ(g, z) := Φg(z) := Φz(g).



The triple (M, G, Φ) is called a G-space or a G-manifold.

Examples of group actions

• Translation and conjugation. The left (right)

translation Lg : G → G, (Rg) h 7→ gh, induces a

left (right) action of G on itself.

• The inner automorphism ADg : G → G, given by

ADg := Rg−1 ◦ Lg defines a left action of G on itself

called conjugation.



• Adjoint and coadjoint action. The differential at

the identity of the conjugation mapping defines a lin-

ear left action of G on g called the adjoint repre-

sentation of G on g

Adg := TeADg : g −→ g.

If Ad∗g : g∗→ g∗ is the dual of Adg, then the map

Φ : G× g∗ −→ g∗

(g, ν) 7−→ Ad∗
g−1 ν,

defines also a linear left action of G on g∗ called the

coadjoint representation of G on g∗.



• Group representation. If the manifold M is a vector

space V and G acts linearly on V , that is, Φg ∈ GL(V )

for all g ∈ G, where GL(V ) denotes the group of all

linear automorphisms of V , then the action is said to

be a representation of G on V . For example, the

adjoint and coadjoint actions of G defined above are

representations.

• Tangent lift of a group action. Φ induces a

natural action on the tangent bundle TM of M by

g · vm := TmΦg(vm), g ∈ G, vm ∈ TmM.



• Cotangent lift of a group action. Let Φ : G×M →

M be a smooth Lie group action on the manifold M .

The map Φ induces a natural action on the cotangent

bundle T ∗M of M by

g · αm := T ∗g·mΦg−1(αm)

where g ∈ G and αm ∈ T ∗mM .



The infinitesimal generator ξM ∈ X(M) associated to

ξ ∈ g is the vector field on Mdefined by

ξM(m) :=
d

dt

∣∣∣∣∣
t=0

Φexp tξ(m) = TeΦ
m · ξ.

The infinitesimal generators are complete vector fields.

The flow of ξM equals (t,m) 7→ exp tξ ·m. Moreover, the

map ξ ∈ g 7→ ξM ∈ X(M) is a Lie algebra antihomo-

morphism, that is,

(i) (aξ + bη)M = aξM + bηM ,

(ii) [ξ, η]M = −[ξM , ηM ].



If the action is on the right, then ξ ∈ g 7→ ξM ∈ X(M) is

a Lie algebra homomorphism.

Let g be a Lie algebra and M a smooth manifold. A

(left) right Lie algebra action of g on M is a Lie

algebra (anti)homomorphism ξ ∈ g 7−→ ξM ∈ X(M) such

that the mapping (m, ξ) ∈ M × g 7−→ ξM(m) ∈ TM is

smooth.

Given a Lie group action, we will refer to the Lie alge-

bra action induced by its infinitesimal generators as the

associated Lie algebra action.



Stabilizers and orbits. The isotropy subgroup or sta-

bilizer of an element m in the manifold M acted upon

by the Lie group G is the closed (hence Lie) subgroup

Gm := {g ∈ G | Φg(m) = m} ⊂ G

whose Lie algebra gm equals

gm = {ξ ∈ g | ξM(m) = 0}.

The orbit Om of the element m ∈ M under the group

action Φ is the set

Om ≡ G ·m := {Φg(m) | g ∈ G}.



The isotropy subgroups of the elements in a group orbit

are related by the expression

Gg·m = gGmg
−1 for all g ∈ G.

The notion of orbit allows the introduction of an equiv-

alence relation in the manifold M , namely, two elements

x, y ∈ M are equivalent if and only if they are in the

same G–orbit, that is, if there exists an element g ∈ G

such that Φg(x) = y. The space of classes with respect

to this equivalence relation is usually referred to as the

space of orbits and, depending on the context, it is

denoted by the symbol M/G.



• Transitive action: only one orbit, that is, Om = M

• Free action: Gm = {e} for all m ∈M

• Proper action: if Φ : G×M →M ×M defined by

Φ(g, z) := (z,Φ(g, z))

is proper. This is equivalent to: for any two conver-

gent sequences {mn} and {gn ·mn} in M , there exists a

convergent subsequence {gnk} in G.

Examples of proper actions: compact group actions,

SE(n) acting on Rn, Lie groups acting on themselves

by translation.



Fundamental facts about proper Lie group actions

Φ : G ×M → M be a proper action of the Lie group G

on the manifold M . Then:

(i) The isotropy subgroups Gm are compact.

(ii) The orbit space M/G is a Hausdorff topological space

(even when G is not Hausdorff).

(iii) If the action is free, M/G is a smooth manifold, and

the canonical projection π : M → M/G defines on M

the structure of a smooth left principal G–bundle.



(iv) If all the isotropy subgroups of the elements of M

under the G–action are conjugate to a given one H

then M/G is a smooth manifold and π : M → M/G

defines the structure of a smooth locally trivial fiber

bundle with structure group N(H)/H and fiber G/H.

(v) If the manifold M is paracompact then there exists a

G-invariant Riemannian metric on it.

(vi) If the manifold M is paracompact then smooth G-

invariant functions separate the G-orbits.



Twisted product. Let G be a Lie group and H ⊂ G

a subgroup. Suppose that H acts on the left on the

manifold A. The right twisted action of H on the

product G×A is defined by

(g, a) · h = (gh, h−1 · a).

This action is free and proper by the freeness and proper-

ness of the action on the G–factor. The twisted prod-

uct G ×H A is defined as the orbit space (G × A)/H

corresponding to the twisted action.



Tube. Let M be a manifold and G a Lie group acting

properly on M . Let m ∈M and denote H := Gm. A tube

around the orbit G ·m is a G-equivariant diffeomorphism

ϕ : G×H A −→ U,

where U is a G-invariant neighborhood of G ·m and A is

some manifold on which H acts.



Slice Theorem. G a Lie group acting properly on M

at the point m ∈M , H := Gm. There exists a tube

ϕ : G×H B −→ U

about G ·m. B is an open H-invariant neighborhood of

0 in a vector space which is H-equivariantly isomorphic

to TmM/Tm(G ·m), where the H-representation is given

by

h · (v + Tm(G ·m)) := TmΦh · v + Tm(G ·m).

Slice: S := ϕ([e,B]) so that U = G · S.



Dynamical consequences. X ∈ X(U)G, U ⊂ M open

G-invariant, S slice at m ∈ U . Then there exists

• XT ∈ X(G·S)G, XT(z) = ξ(z)M(z) for z ∈ G·S, where ξ :

G ·S → g is smooth G-equivariant and ξ(z) ∈ Lie(N(Gz))

for all z ∈ G · S. The flow Tt of XT is given by Tt(z) =

exp tξ(z) · z, so XT is complete.

• XN ∈ X(S)Gm

• If z = g · s, for g ∈ G and s ∈ S, then

X(z) = XT(z) + TsΦg (XN(s)) = TsΦg (XT(s) +XN(s))



• If Nt is the flow of XN (on S) then the integral curve

of X ∈ X(U)G through g · s ∈ G · S is

Ft(g · s) = g(t) ·Nt(s),

where g(t) ∈ G is the solution of

ġ(t) = TeLg(t)

(
ξ(Nt(s))

)
, g(0) = g.

This is the tangential-normal decomposition of a G-

invariant vector field (or Krupa decomposition in bi-

furcation theory).



Geometric consequences. Orbit type, fixed point,

and isotropy type spaces

M(H) = {z ∈M | Gz ∈ (H)},

MH = {z ∈M | H ⊂ Gz},

MH = {z ∈M | H = Gz}

are submanifolds.

MH is open in MH.

m ∈ M is regular if ∃U 3 m such that dimOz =

dimOm, ∀z ∈ U .



Principal Orbit Theorem: M connected. The subset

Mreg is connected, open, and dense in M . M/G contains

only one principal orbit type, which is a connected open

and dense subset of it.

The Stratification Theorem: Let M be a smooth

manifold and G a Lie group acting properly on it. The

connected components of the orbit type manifolds M(H)

and their projections onto orbit space M(H)/G constitute

a Whitney stratification of M and M/G, respectively.

This stratification of M/G is minimal among all Whit-

ney stratifications of M/G.



G-Codostribution Theorem: Let G be a Lie group

acting properly on the smooth manifold M and m ∈ M

a point with isotropy subgroup H := Gm. Then

((
Tm(G ·m)

)◦)H
=

{
df(m) | f ∈ C∞(M)G

}
.



SIMPLE EXAMPLES

• S1 acting on R2

Since S1 is Abelian we do not distinguish between orbit

types and isotropy types, that is, R2
(H) = R2

H for any

isotropy group H of this action.

If x 6= 0 then S1
x = 1 and S1 · x is the circle centered

at the origin of radius ‖x‖. The slice is the ray through

0 and x. (R2)reg = R2 \ {0}, which is open, connected,

dense. R2
1 = (R2)reg and (R2)reg/S1 =]0,∞[.



If x = 0, then S1
0 = S1. The slice is R2. R2

0 = {0} and

R2
0/S

1 = {0}.

Finally R2/S1 = [0,∞[.

• SO(3) acting on R3

Since SO(3) is non-Abelian, there is a distinction be-

tween orbit and isotropy types.

Since every rotation has an axis, if x 6= 0 the isotropy

subgroup SO(3)x = S1(x), the circle representing the

rotations with axis x. So (R3)reg = R3 \ {0}.



The orbit SO(3) · x is the sphere centered at the origin

with radius ‖x‖. The slice at x is the ray connecting the

origin to x.

(R3)S1(x) is the set of points in R3 which have the same

istropy group S1(x), so it is equal to the line through the

origin and x with the origin eliminated. It is disconnected

and not SO(3)-invariant.

(R3)(S1(x)) is the set of points in R3 which have the

istropy group S1(x) conjugate to S1(x). But any two

rotations are conjugate, so (R3)(S1(x)) = R3 \ {0}, which



is again equal in this case to (R3)reg. This is connected,

open, dense. (R3)(S1(x))/SO(3) =]0,∞[.

If x = 0, the slice is R3, SO(3)0 = SO(3), (R3)SO(3) =

(R3)(SO(3)) = {0}, and (R3)(SO(3)) = {0}/SO(3) = {0}.

Finally R3/SO(3) = [0,∞[.

• Semidirect products

V vector space, G Lie group

σ : G→ GL(V ) representation



σ′ : g→ gl(V ) induced Lie algebra representation:

ξ · v := ξV (v) := σ′(ξ)v :=
d

dt

∣∣∣∣∣
t=0

σ(exp tξ)v

S := GsV semidirect product: underlying manifold is

G× V , multiplication

(g1, v1)(g2, v2) := (g1g2, v1 + σ(g1)v2)

for g1, g2 ∈ G and v1, v2 ∈ V , identity element is (e,0)

and (g, v)−1 = (g−1,−σ(g−1)v).

Note that V is a normal subgroup of S and that S/V = G.



Let g be the Lie algebra of G and let s := gsV be the

Lie algebra of S; it is the semidirect product of g with

V using the representation σ′ and its underlying vector

space is g× V . The Lie bracket on s is given by

[(ξ1, v1), (ξ2, v2)] = ([ξ1, ξ2], σ′(ξ1)v2 − σ′(ξ2)v1)

for ξ1, ξ2 ∈ g and v1, v2 ∈ V .

Identify s∗ with g∗ × V ∗ by using the duality pairing on

each factor.



Adjoint action of S on s:

Ad(g,u)(ξ, v) =
(
Adg ξ, σ(g)v − σ′(Adg ξ)u

)
,

for (g, u) ∈ S, (ξ, v) ∈ s.

Coadjoint action of S on s∗:

Ad∗(g,u)−1(ν, a) =
(
Ad∗g−1 ν + (σ′u)∗σ∗(g)a, σ∗(g)a

)
,

for (g, u) ∈ S, (ν, a) ∈ s∗, where

σ∗(g) := σ(g−1)∗ ∈ GL(V ∗),

σ′u : g→ V is the linear map given by σ′u(ξ) := σ′(ξ)u and

(σ′u)∗ : V ∗→ g∗ is its dual.



Clasification of orbits is a major problem!

Do the example of the coadjoint action of SE(3) =

SO(3)sR3. In this case:

σ : SO(3) → GL(R3) is usual matrix multiplication on

vectors, that is, σ(A)v := Av, for any A ∈ SO(3) and

v ∈ R3.

Dualizing we get σ(A)∗Γ = A∗Γ = A−1Γ, for any Γ ∈

V ∗ ∼= R3.



The induced Lie algebra representation σ′ : R3 ∼= so(3)→
gl(R3) is given by σ′(Ω)v = σ′vΩ = Ω× v, for any Ω,v ∈
R3.

Therefore,
(
σ′v

)∗
Γ = v×Γ and σ′(Ω)∗Γ = Γ×Ω, for any

v ∈ V ∼= R3, Ω ∈ R3 ∼= so(3), and Γ ∈ V ∗ ∼= R3.

We have ad∗Ω Π = Π×Ω

So all formulas in this case become:

(A, a)(B,b) = (AB,Ab + a)

(A, a)−1 = (A−1,−A−1a)



[(x,y), (x′,y′)] = (x× x′,x× y′ − x′ × y)

Ad(A,a)(x,y) = (Ax,Ay −Ax× a)

Ad∗(A,a)−1(u,v) = (Au + a×Av,Av)

Let {e1, e2, e3, f1, f2, f3} be an orthonormal basis of se(3) =

R3×R3 such that ei = fi for i = 1,2,3. The dual basis of

se(3)∗ using the dot product is again {e1, e2, e3, f1, f2, f3}.
Let e ∈ {e1, e2, e3} and f ∈ {f1, f2, f3} be arbitrary. What

are the coadjoint orbits?

SE(3) · (0, 0) = (0, 0). Since SE(3)(0,0) = SE(3) is not

compact, the coadjoint action is not proper.



The orbit through (e, 0), e 6= 0, is

SE(3) · (e, 0) = { (Ae, 0) | A ∈ SO(3) } = S2
‖e‖ × {0},

the two-sphere of radius ‖e‖.

The orbit through (0, f), f 6= 0, is

SE(3) · (0, f) = { (a×Af ,Af) | A ∈ SO(3), a ∈ R3 }

= { (u,Af) | A ∈ SO(3), u ⊥ Af } = TS2
‖f‖,

the tangent bundle of the two-sphere of radius ‖f‖; note

that the vector part is the first component. We can

think of it also as T ∗S2
‖f‖.



The orbit through (e, f), where e 6= 0, f 6= 0, equals

SE(3) · (e, f) = { (Ae + a×Af ,Af) | A ∈ SO(3), a ∈ R3 }.

To get a better description of this orbit, consider the

smooth map

ϕ : (A, a) ∈ SE(3) 7→
Ae + a×Af −

e · f
‖f‖2

Af ,Af

 ∈ TS2
‖f‖,

which is right invariant under the isotropy group

SE(3)(e,f) = { (B,b) | Be + b× f = e, Bf = f }

and induces hence a diffeomorphism ϕ̄ : SE(3)/SE(3)(e,f)→

TS2
‖f‖.



The orbit through (e, f) is diffeomorphic to SE(3)/SE(3)(e,f)

by the diffeomorphism

(A, a) 7→ Ad∗(A,a)−1(e, f).

Composing these two maps and identifying TS2 and

T ∗S2 by the natural Riemannian metric on S2, we get

the diffeomorphism Φ : SE(3) · (e, f)→ T ∗S2
‖f‖ given by

Φ(Ad∗(A,a)−1(e, f)) =

Ae + a×Af −
e · f
‖f‖2

Af ,Af

 .
Thus this orbit is also diffeomorphic to T ∗S2

‖f‖.



• SE(3) acting on R3

This action is proper: (A, a) · u := Au + a. It is not

a representation. The orbit through the origin is R3,

SE(3)0 = SO(3).

This action is transitive: given u ∈ R3 we have (I, 0) ·u =

u. So there is only one single orbit which is R3.



EXAMPLE

• Consider R6 with the bracket

{f, g} =
3∑
i=1

 ∂f
∂xi

∂g

∂yi
−
∂f

∂yi

∂g

∂xi



• S1-action given by

Φ : S1 × R6 −→ R6

(eiφ, (x, y)) 7−→ (Rφx, Rφy)

• Hamiltonian of the spherical pendulum

h =
1

2
〈y, y〉+ 〈x, e3〉



• Impose constraint 〈x, x〉 = 1

• Angular momentum: J(x, y) = x1y2 − x2y1.



Hilbert-Weyl Theorem: H → Aut(V ) representation,

H compact Lie group. Then the algebra P(V )H of H-

invariant polynomials on V is finitely generated, i.e.,

∀P ∈ P(V )H, ∃k ∈ N, π1, . . . , πk ∈ P(V )H, P̂ ∈ R[X1, . . . , Xk]

s.t. P = P̂ ◦(π1, . . . , πk). Minimal set is a Hilbert basis.

Hilbert basis of the algebra of S1-invariant polynomials

on R6 is given by

σ1 = x3 σ3 = y2
1 + y2

2 + y2
3 σ5 = x2

1 + x2
2

σ2 = y3 σ4 = x1y1 + x2y2 σ6 = x1y2 − x2y1.

Semialgebraic relations

σ2
4 + σ2

6 = σ5(σ3 − σ2
2), σ3 ≥ 0, σ5 ≥ 0.



Hilbert map π : v ∈ V 7→ (π1(v), . . . , πk(v)) ∈ Rk separates

H-orbits. So V/H ∼= range(π).

Schwarz Theorem: The map f ∈ C∞(Rk) 7→ f◦(π1, . . . πk)

∈ C∞(V )H is surjective.

Mather Theorem: The quotient presheaf of smooth

functions on V/H is isomorphic to the presheaf of Whit-

ney smooth functions on π(V ) induced by the sheaf of

smooth functions on Rk.

Tarski-Seidenberg Theorem: Since π is a polynomial

map, range(π) ⊂ Rk is semi-algebraic.



Theorem: Every semi-algebraic set admits a canoni-

cal Whitney stratification into a finite number of semi-

algebraic subsets.

Bierstone Theorem: This canonical stratification of

π(V ) coincides with the stratification of V/H into orbit

type manifolds.

These theorems can be used to explicitly describe quo-

tient spaces of representations as semi-algebraic subsets

of a (high dimensional) Euclidean space.

Return to our concrete case of the spherical pendulum.



The Hilbert map is given by

σ : TR3 −→ R6

(x, y) 7−→ (σ1(x, y), . . . , σ6(x, y)).

The S1-orbit space TR3/S1 can be identified with the

semialgebraic variety σ(TR3) ⊂ R6, defined by these re-

lations.

TS2 is a submanifold of R6 given by

TS2 = {(x, y) ∈ R6 | 〈x,x〉 = 1, 〈x,y〉 = 0}.

TS2 is S1-invariant.



TS2/S1 can be thought of the semialgebraic variety σ(TS2)

defined by the previous relations and

σ5 + σ2
1 = 1 σ4 + σ1σ2 = 0,

which allow us to solve for σ4 and σ5, yielding

TS2/S1 = σ(TS2) = {(σ1, σ2, σ3, σ6) ∈ R4 |

σ2
1σ

2
2 + σ2

6 = (1− σ2
1)(σ3 − σ2

2),

|σ1| ≤ 1, σ3 ≥ 0}.



The Poisson bracket is

{·, ·}TS2/S1
σ1 σ2 σ3 σ6

σ1 0 1− σ2
1 2σ2 0

σ2 −(1− σ2
1) 0 −2σ1σ3 0

σ3 −2σ2 2σ1σ3 0 0
σ6 0 0 0 0

The reduced Hamiltonian is

H =
1

2
σ3 + σ1



If µ 6= 0 then (TS2)µ := J−1(µ)/S1 appears as the graph

of the smooth function

σ3 =
σ2

2 + µ2

1− σ2
1
, |σ1| < 1.

The case µ = 0 is singular and (TS2)0 := J−1(0)/S1 is

not a smooth manifold.



ABSTRACT SYMMETRY REDUCTION

The case of general vector fields

M manifold

G×M →M smooth proper Lie group action

X ∈ X(M)G, G-equivariant vector field

Ft flow of X ∈ X(M)G

Law of conservation of isotropy:



MH := {m ∈ M | Gm = H}, the H-isotropy type sub-

manifold, is preserved by Ft.

MH is, in general, not closed in M .

Properness of the action implies:

• Gm is compact

• the (connected components of) MH are embedded

submanifolds of M



N(H)/H (where N(H) denotes the normalizer of H in

G) acts freely and properly on MH.

πH : MH →MH/(N(H)/H) projection

iH : MH ↪→M inclusion

X induces a unique H-isotropy type reduced vector

field XH on MH/(N(H)/H) by

XH ◦ πH = TπH ◦X ◦ iH,



whose flow FHt is given by

FHt ◦ πH = πH ◦ Ft ◦ iH.

If G is compact and the action is linear, then the con-

struction of MH/(N(H)/H) can be implemented in a

very explicit and convenient manner by using the in-

variant polynomials of the action and the theorems of

Hilbert and Schwarz-Mather.



The Hamiltonian case

(M,ω) Poisson manifold, G connected Lie group with

Lie algebra g, G×M →M free proper symplectic action

J : M → g∗ momentum map if XJξ = ξM , where Jξ :=

〈J, ξ〉 and ξM is the infinitesimal generator given by ξ ∈ g

J : M → g∗ (infinitesimally) equivariant if J(g ·m) =

Ad∗
g−1 J(m), ∀g ∈ G

(
TmJ (ξM(m)) = − ad∗ξ J(m) ⇐⇒

J[ξ,η] =
{
Jξ,Jη

} )
.



Proof Take the derivative on M of the defining relation

Jξ := 〈J, ξ〉. Get: dJξ(m)(vm) = 〈TmJ(vm), ξ〉. Hence

{
Jξ,Jη

}
(m) = XJη

[
Jξ
]

(m) = dJξ(m) (XJη(m))

= 〈TmJ (XJη(m)) , ξ〉 = 〈TmJ (ηM(m)) , ξ〉 .

On the other hand,

J[ξ,η](m) = 〈J(m), [ξ, η]〉 = −〈J(m), adη ξ〉

= −
〈
ad∗η J(m), ξ

〉
.



Noether’s Theorem: The fibers of J are preserved by

the Hamiltonian flows associated to G-invariant Hamil-

tonians. Equivalently, J is conserved along the flow of

any G-invariant Hamiltonian.

Proof Let h ∈ C∞(M) be G-invariant, so h ◦Φg = h for

any g ∈ G. Take the derivative of this relation at g = e

and get £ξM
h = 0. But ξM = XJξ so we get {Jξ, h} =〈

dh,XJξ
〉

= £ξM
h = 0, which shows that Jξ ∈ C∞(M)

is constant on the flow of Xh for any ξ ∈ g, that is J is

conserved. �



Example: lifted actions on cotangent bundles. Φ :

G × Q → Q Lie group action, g · q := Φ(g, q). Its lift to

the cotangent bundle T ∗Q is

g · αq := Ψgαq := T ∗g·qΦg−1(αq).

Ψ admits the following equivariant momentum map:

〈J(αq), ξ〉 = 〈αq, ξQ(q)〉, ∀αq ∈ T ∗Q, ∀ξ ∈ g.

Very important so we will give two complete proofs.



Proof 1 Recall that the cotangent lift of a diffeomor-

phism preserves the canonical one-form Θ on T ∗Q. Hence

Ψ∗exp tξΘ = Θ. Take d
dt

∣∣∣∣
t=0

of this:

0 = £ξT∗QΘ = iξT∗QdΘ+diξT∗QΘ = −iξT∗QΩ+d
〈
Θ, ξT ∗Q

〉
which shows that a momentum map exists and is equal

to Jξ =
〈
Θ, ξT ∗Q

〉
. However, ∀αq ∈ T ∗Q, we have

Jξ(αq) =
〈
Θ(αq), ξT ∗Q(αq)

〉
=

〈
αq, TαqπQ

(
ξT ∗Q(αq)

)〉
.

But

TαqπQ
(
ξT ∗Q(αq)

)
= TαqπQ

(
d

dt

∣∣∣∣∣
t=0

Ψexp tξ(αq)
)

=
d

dt

∣∣∣∣∣
t=0

(
πQ ◦Ψexp tξ

)
(αq) =

d

dt

∣∣∣∣∣
t=0

(
Φexp tξ ◦ πQ

)
(αq)

= ξQ(q),



which proves the formula.

We prove G-equivariance. Let g ∈ G, ξ ∈ g, αq ∈ T ∗Q.

〈J(g · αq), ξ〉 =
〈
g · αq, ξQ(g · q)

〉
=

〈
αq,

(
Tg·qΦ−1

g ◦ ξQ ◦Φg
)

(q)
〉

=
〈
αq,

(
Adg−1 ξ

)
Q

(q)
〉

=
〈
J(αq),Adg−1 ξ

〉
=

〈
Ad∗g−1 J(αq), ξ

〉
. �

Proof 2 Define the momentum function of X ∈ X(Q)

P : X(Q)→ C∞(T ∗Q) by P(X)(αq) := 〈αq, X(q)〉

for any αq ∈ T ∗qQ. In coordinates P(qi, pi) = Xj(pi)pj.



L(T ∗Q) is the space of smooth functions linear on

the fibers. In coordinates F ∈ L(T ∗Q) ⇐⇒ F (qi, pi) =

Xj(qi)pj for some functions Xj. If H(qi, pi) = Y j(qi)pj,

{F,H}(qi, pi) =
∂F

∂qj
∂H

∂pj
−
∂H

∂qj
∂F

∂pj

=
∂Xi

∂qj
piY

kδ
j
k −

∂Y i

∂qj
piX

kδ
j
k

=

∂Xi

∂qj
piY

j −
∂Y i

∂qj
piX

j

 pi
so L(T ∗Q) is a Lie subalgebra of C∞(T ∗Q).



Momentum Commutator Lemma: The Lie algebras

(i) (X(Q), [·, ·]) of vector fields on Q

(ii) Hamiltonian vector fields XF on T ∗Q with F ∈ L(T ∗Q)

are isomorphic. Each of these Lie algebras is anti-

isomorphic to (L(T ∗Q), {·, ·}). In particular, we have

{P(X),P(Y )} = −P([X,Y ]).

Proof P : X(Q) → L(T ∗Q) is linear and satisfies the

relation above because

[X,Y ]i =
∂Y i

∂qj
Xj −

∂Xi

∂qj
Y j

implies



−P([X,Y ]) =

∂Xi

∂qj
piY

j −
∂Y i

∂qj
piX

j

 pi = {P(X),P(Y )}

as we saw above. So, P is a Lie algebra anti-homomorphism.

P(X) = 0 ⇐⇒ P(X)(αq) := 〈αq, X(q)〉 , ∀αq ∈ T ∗Q ⇐⇒

X(q) = 0, ∀q ∈ Q, so P is injective.

For each F ∈ L(T ∗Q), define X(F ) ∈ X(Q) by

〈αq, X(F )(q)〉 := F (αq).

Then P(X(F )) = F , so P is also surjective.



We know that F 7→ XF is a Lie algebra anti-homomorphism

(by the Jacobi identity for {·, ·}) from (L(T ∗Q), {·, ·}) to

({XF | F ∈ L(T ∗Q)}, [·, ·]). This map is surjective by def-

inition. Moreover, if XF = 0 then F is constant on T ∗Q,

hence equal to zero becuase F is linear on the fibers. �

If X ∈ X(Q) has flow ϕt, then the flow of XP(X) on T ∗Q

is T ∗ϕ−t. Call X ′ := XP(X) the cotangent lift of X.

Proof πQ : T ∗Q → Q cotangent bundle projection. Dif-

ferentiate πQ ◦ T ∗ϕ−t = ϕt ◦ πQ at t = 0 and get

TπQ ◦ Y = X ◦ πQ, where Y (αq) :=
d

dt

∣∣∣∣∣
t=0

T ∗ϕ−t(αq)



So, T ∗ϕ−t is the flow of Y , by construction. Since T ∗ϕ−t

preserves the canonical one-form Θ ∈ Ω1(T ∗Q), it fol-

lows that £Y Θ = 0, hence

iY Ω = −iY dΘ = diY Θ−£Y Θ = diY Θ

By definition of Θ, we have

iY Θ(αq) = 〈Θ(αq), Y (αq)〉 =
〈
αq, TαqπQ(Y (αq))

〉
= 〈αq, X(q)〉 = P(X)(αq) ⇐⇒ iY Θ = P(X),

that is, iY Ω = dP(X)⇐⇒ Y = XP(X). �

Note:[
XP(X), XP(Y )

]
= −X{P(X),P(Y )} = −X−P([X,Y ]) = XP([X,Y ])



g acts on the left on Q, so it acts on T ∗Q by ξT ∗Q :=

XP(ξQ). This g-action on T ∗Q is Hamiltonian with in-

finitesimally equivariant momentum map J : P → g∗

given by

〈J(αq), ξ〉 =
〈
αq, ξQ(q)

〉
= P(ξQ)(αq)

If G, with Lie algebra g, acts on Q and hence on T ∗Q by

cotangent lift, then J is equivariant.

In coordinates, ξiQ(qj) = ξaAia(q
j) ⇒ Jaξa = piξ

i
Q =

piA
i
aξ
a, i.e.,

Ja(q
j, pj) = piA

i
a(q

j)



Proof For Lie group actions, the theorem follows di-

rectly from the previous one, because the infinitesimal

generator is given by ξT ∗Q := XP(ξQ), so the momentum

map exists and is given by Jξ = P(ξQ) for all ξ ∈ g.

For Lie algebra actions we need to check first that the

cotangent lift gives a canonical action. So, for ξ, η ∈ g,

ξT ∗Q[{F,H}] = XP(ξQ)[{F,H}]

=
{
XP(ξQ)[F ], H

}
+

{
F,XP(ξQ)[H]

}
=

{
ξT ∗Q[F ], H

}
+

{
F, ξT ∗Q[H]

}

Done!



Remember that the momentum map J : T ∗Q → g∗ is

given by Jξ = P(ξQ) for any ξ ∈ g.

Recall the formula [ξ, η]Q = −[ξQ, ηQ]. Then

J[ξ,η] = P([ξ, η]Q) = −P([ξQ, ηQ]) =
{
P(ξQ),P(ηQ)

}
=

{
Jξ,Jη

}
,

so J is infinitesimally equivariant.

Now assume that G has Lie algebra g and that G acts

on Q and hence on T ∗Q by cotangent lift. Remember:

g · αq := T ∗g·qΦg−1αq.



We prove G-equivariance. Let g ∈ G, ξ ∈ g, αq ∈ T ∗Q.

〈J(g · αq), ξ〉 =
〈
g · αq, ξQ(g · q)

〉
=

〈
αq,

(
Tg·qΦ−1

g ◦ ξQ ◦Φg
)

(q)
〉

=
〈
αq,

(
Adg−1 ξ

)
Q

(q)
〉

=
〈
J(αq),Adg−1 ξ

〉
=

〈
Ad∗g−1 J(αq), ξ

〉
. �

If J : M → g∗ is an infinitesimally equivariant momentum

map for a left Hamiltonian action of g on a Poisson

manifold M , then J is a Poisson map:

J∗{F1, F2}+ = {J∗F1,J
∗F2}, ∀F1, F2 ∈ C∞(g∗).



Proof Infinitesimal equivariance ⇔ {Jξ,Jη} = J[ξ,η]. Let

m ∈M , ξ = δF1/δµ, η = δF2/δµ, µ := J(m) ∈ g∗. Then

J∗{F1, F2}+(m) =
〈
µ,

δF1

δµ
,
δF2

δµ

〉 = 〈µ, [ξ, η]〉

= J[ξ,η](m) = {Jξ,Jη}(m).

But for any m ∈M an vm ∈ TmM , we have

d(F1 ◦ J)(m)(vm) = dF1(µ) (TmJ(vm))

=
〈
TmJ(vm),

δF1

δµ

〉
= dJξ(m)(vm)

i.e., F1◦J and Jξ have equal m-derivatives. The Poisson

bracket depends only on the point values of the first

derivatives and hence



{F1 ◦ J, F2 ◦ J}(m) = {Jξ,Jη}(m). �

Special case: M = T ∗G, G-action on T ∗G is the lift of

left translation. We get: {F1, F2}+ ◦ JL = {F1 ◦ JL, F2 ◦

JL}. Restrict this relation to g∗ and get {F1, F2}+(µ) =

{F1 ◦ JL, F2 ◦ JL}(µ). But (Fi ◦ JL)(αg) = Fi(T
∗
eRgαg) =:

(Fi)R(αg), where (Fi)R : T ∗G → g∗ is the right invariant

extension of Fi to T ∗G. So we get

{F1, F2}+(µ) = {(F1)R, (F2)R}(µ).



Identifying the set of functions on g∗ with the set of

right(left)-invariant functions on T ∗G endows g∗ with the

±Lie-Poisson structure.

This is an a posteriori proof, i.e., one needs to already

know the formula for the Lie-Poisson bracket.

Example: linear momentum. Take the phase space

of the N–particle system, that is, T ∗R3N . The additive

group R3 acts on it by

v·(qi, pi) = (qi+v, pi) ⇒ ξR3(qi) = (q1, . . . ,qN ; ξ, . . . , ξ).



J : T ∗R3N −→ Lie(R3) ' R3

(qi, pi) 7−→ ∑N
i=1 pi

which is the classical linear momentum.

Indeed, by the general formula ofcotangent lifted ac-

tions, we have

〈
J(qi,p

i), ξ
〉

=
N∑
i=1

pi · ξ.

Example: angular momentum. Let SO(3) act on R3

and then, by lift, on T ∗R3, that is, A · (q,p) = (Aq, Ap).

J : T ∗R3 −→ so(3)∗ ' R3

(q,p) 7−→ q× p.

which is the classical angular momentum.



Let’s do it using the formula for cotangent lifted actions.

If ξ ∈ R3, ξ̂v := ξ × v, for any v ∈ R3, ξ̂ ∈ so(3), then

ξR3(v) =
d

dt

∣∣∣∣∣
t=0

etξ̂v = ξ̂v = ξ × v

so that

〈J(q,p), ξ〉 = p · ξR3(q) = p · (ξ × q) = (q× p) · ξ

which shows that

J(q,p) = q× p



Example: Momentum map of the cotangent lifted

left and right translations. Let G act on itself on the

left: Lg(h) := gh. The infinitesimal generator of ξ ∈ g is

ξLG(h) :=
d

dt

∣∣∣∣∣
t=0

Lexp tξ(h) =
d

dt

∣∣∣∣∣
t=0

Rh(exp tξ) = TeRhξ

The infinitesimal generator of left translation is given by

the tangent map of right translation: ξLG(h) = TeRhξ.

The momentum map of the cotangent lift of left trans-

lation JL : T ∗G→ g∗ is hence given by

〈JL(αg), ξ〉 =
〈
αg, ξ

L
G(g)

〉
= 〈αg, TeRgξ〉 = 〈T ∗eRgαg, ξ〉

Hence JL(αg) = T ∗eRgαg.



For the cotangent lift of right translation, ξRG(g) = TeLgξ

and JR(αg) = T ∗eLgαg.

Example: symplectic linear actions. Let (V, ω) be a

symplectic linear space and let G be a subgroup of the

linear symplectic group, acting naturally on V .

〈J(v), ξ〉 =
1

2
ω(ξV (v), v).

This J is not that of a cotangent lifted action.

Example: Cayley-Klein parameters and the Hopf

fibration. Consider the natural action of SU(2) on C2.

The symplectic form on C2 is minus the imaginary part

of the Hermitian inner product.



Since this action is by isometries of the Hermitian met-

ric, it is automatically symplectic and therefore has a

momentum map J : C2→ su(2)∗ given, as above, by

〈J(z, w), ξ〉 =
1

2
ω
(
ξ(z, w)T, (z, w)T

)
, z, w ∈ C, ξ ∈ su(2).

The Lie algebra su(2) of SU(2) consists of 2 × 2 skew

Hermitian matrices of trace zero. This Lie algebra is

isomorphic to so(3) and therefore to (R3,×) by the iso-

morphism given by

x = (x1, x2, x3) ∈ R3 7−→

x̃ :=
1

2

 −ix3 −ix1 − x2

−ix1 + x2 ix3

 ∈ su(2).



Thus we have

[x̃, ỹ] = (x× y)˜, ∀x,y ∈ R3.

Other useful formulas are

det(2x̃) = ‖x‖2 and trace(x̃ỹ) = −
1

2
x · y.

Identify su(2)∗ with R3 by the map µ ∈ su(2)∗ 7→ µ̌ ∈ R3

defined by

µ̌ · x := −2〈µ, x̃〉

for any x ∈ R3.

The symplectic form on C2 is given by minus the imag-

inary part of the Hermitian inner product.



With these notations, the momentum map J̌ : C2 → R3

can be explicitly computed in coordinates: for any x ∈ R3

we have

J̌(z, w) · x = −2〈J(z, w), x̃〉

=
1

2
Im

 −ix3 −ix1 − x2

−ix1 + x2 ix3

  z
w

 ·
 z
w


= −

1

2
(2 Re(wz),2 Im(wz), |z|2 − |w|2) · x.

Therefore

J̌(z, w) = −
1

2
(2wz, |z|2 − |w|2) ∈ R3.



J̌ is a Poisson map from C2, endowed with the canoni-

cal symplectic structure, to R3, endowed with the + Lie

Poisson structure. Therefore, −J̌ : C2 → R3 is a canon-

ical map, if R3 has the − Lie-Poisson bracket relative

to which the free rigid body equations are Hamiltonian.

Pulling back the Hamiltonian

H(Π) =
1

2
Π · I−1Π, I−1Π :=

Π1

I1
,
Π2

I2
,
Π3

I3


to C2 gives a Hamiltonian function (called collective) on

C2. I = diag(I1, I2, I3) is the moment of inertia tensor

written in a principal axis body frame of the free rigid

body.



The classical Hamilton equations for this function are

therefore projected by −J̌ to the rigid body equations

Π̇ = Π× I−1Π.

In this context, the variables (z, w) are called the Cayley-

Klein parameters. They represent a first attempt to

understand the rigid body equations as a Hamiltonian

system, before the introduction of Poisson manifolds.

In quantum mechanics, the same variables are called

the Kustaanheimo-Stiefel coordinates. A similar con-

struction was carried out in fluid dynamics making the

Euler equations a Hamiltonian system relative to the so-

called Clebsch variables.



Now notice that if

(z, w) ∈ S3 :=
{
(z, w) ∈ C2 | |z|2 + |w|2 = 1

}
,

then ‖−J̌(z, w)‖ = 1/2, so that −J̌|S3 : S3→ S2
1/2, where

S2
1/2 is the sphere in R3 of radius 1/2.

It is also easy to see that −J̌|S3 is surjective and that

its fibers are circles. Indeed, given (x1, x2, x3) = (x1 +

ix2, x3) = (reiψ, x3) ∈ S2
1/2, the inverse image of this

point is

− J̌−1(reiψ, x3) =
eiθ

√√√√1

2
+ x3, eiϕ

√√√√1

2
− x3

 ∈ S3
∣∣∣∣ ei(θ−ϕ+ψ) = 1

 .



One recognizes now that −J̌|S3 : S3 → S2
1/2 is the Hopf

fibration. In other words:

the momentum map of the SU(2)-action on C2, the

Cayley-Klein parameters, the Kustaanheimo-Stiefel co-

ordinates, and the family of Hopf fibrations on concentric

three-spheres in C2 are the same map.



Constructive proof of the Lie-Poisson

Reduction Theorem

• If ξ ∈ g, denote by ξL ∈ X(G) the left invariant vector

field whose value at e is ξ, i.e., ξL(g) = TeLg(ξ), ∀g ∈ G.

[ξL, ηL] = [ξ, η]L

by definition of the Lie bracket on g.

• Left trivialize T ∗G:

λ : T ∗G 3 αg 7→
(
g, T ∗eLgαg

)
= (g,JR(αg)) ∈ G× g∗



λ is an equivariant diffeomorphism relative to the lift of

left translation on T ∗G and the left G-action on G × g∗

given by g · (h, µ) := (gh, µ). Therefore, (T ∗G)/G ∼=

(G× g∗)/G = g∗ and hence JR : T ∗G→ g∗ is the compo-

sition of this diffeomorphism with the canonical projec-

tion T ∗G → (T ∗G)/G. Consequently, g∗ inherits a Pois-

son structure, which we call, for the time being {·, ·}−,

uniquely characterized by

{F1, F2}− ◦ JR = {F1 ◦ JR, F2 ◦ JR}, ∀F1, F2 ∈ C∞(g∗).

GOAL: Compute this bracket.



To do this, it is enough to work with linear functions

F1, F2 because the Poisson bracket depends only on the

values of the differentials of the functions at each point.

If Fi is linear, then Fi(µ) =
〈
µ, δFiδµ

〉
, for some constant

element δFi
δµ ∈ g. If µ := T ∗eLgαg ∈ g∗, we get

(Fi)L(αg) = Fi
(
T ∗eLgαg

)
=

〈
T ∗eLgαg,

δFi
δµ

〉
=

〈
αg, TeLg

δFi
δµ

〉

=
〈
αg,

δFi
δµ


L

(g)
〉

= P
δFi

δµ


L

 (αg)

Thus, we get



{(F1)L, (F2)L} (µ) =

P
δF1

δµ


L

 ,P
δF2

δµ


L

 (µ)

= −P
δF1

δµ


L

,

δF2

δµ


L

 (µ)

= −P
δF1

δµ
,
δF2

δµ


L

 (µ)

= −
〈
µ,

δF1

δµ
,
δF2

δµ

〉 . �

This theorem and general considerations implies the fol-

lowing.



Lie-Poisson reduction of dynamics

Assume that H ∈ C∞(T ∗G) is left(right)-invariant. Then

H∓ := H|g∗ satisfy H = H− ◦ JR and H = H+ ◦ JL. The

flow Ft on T ∗G and the flow F∓t of XH∓ on g∗∓ are related

by

JR ◦ Ft = F−t ◦ JR, JL ◦ Ft = F+
t ◦ JL.

Remember that JL is conserved.

If α(t) ∈ Tg(t)G is an integral curve of XH in T ∗G, let

µ(t) := JR(α(t)), ν(t) := JL(α(t)) = ν = const. Then

ν = Ad∗g(t)−1 µ(t).



Reconstruction of dynamics

Differentiate in t the previous relation:

0 = Ad∗g(t)−1

(
− ad∗g(t)−1ġ(t) µ(t) +

dµ

dt

)

However, µ(t) satisfies the Lie-Poisson equations

dµ

dt
= ad∗δH−/δµ µ ⇐⇒ ad∗−g(t)−1ġ(t)+δH−/δµ = 0

A sufficient condition for this to hold is g(t)−1ġ(t) =

δH−/δµ. So, the integral curve of the unreduced system

on T ∗G is found by solving:



dµ(t)

dt
= ad∗δH−

δµ (t)
µ(t),

dg(t)

dt
= TeLg(t)

δH−

δµ
(t)

and putting

α(t) := T ∗g(t)Lg(t)−1µ(t).

The expression of the push forward λ∗XH ∈ X(G× g) is

(λ∗XH)(g, µ) =

TeLgδH−
δµ

, µ, ad∗δH−
δµ

µ

 ∈ TgG× Tµg∗.
Long direct proof.



More precise properties of the momentum map

• Freeness of the action is equivalent to the regularity

of the momentum map: rangeTmJ = (gm)◦.

Proof: We have TmM = {Xf(m) | f ∈ C∞(U)}, U

open neighborhood of m. For any ξ ∈ g we have

〈
TmJ

(
Xf(m)

)
, ξ
〉

= dJξ(m)
(
Xf(m)

)
= {Jξ, f}(m)

= −df(m)
(
XJξ(m)

)
= −df(m) (ξM(m)) .



So

ξ ∈ gm⇐⇒ ξM(m) = 0⇐⇒

df(m) (ξM(m)) = 0, ∀f ∈ C∞(U)⇐⇒〈
TmJ

(
Xf(m)

)
, ξ
〉

= 0, ∀f ∈ C∞(U)⇐⇒

ξ ∈ (rangeTmJ)◦ �

• ker TmJ = (g ·m)ω.

Proof: vm ∈ ker TmJ if and only if for all ξ ∈ g

0 = 〈TmJ(vm), ξ〉 = dJξ(m)(vm) = ω(m)
(
XJξ(m), vm

)
= ω(m) (ξM(m), vm)

⇐⇒ vm ∈ (g ·m)ω �



• Existence: The obstruction is the vanishing of the

map

ρ : g/[g, g] −→ H1(M,R)
[ξ] 7−→ [iξMω]

• Equivariance: When is (g, [·, ·]) → (C∞(M), {·, ·}) de-

fined by ξ 7→ Jξ, ξ ∈ g, a Lie algebra homomorphism,

that is,

J[ξ, η] = {Jξ,Jη}, ξ, η ∈ g.

Answer: if and only if

TzJ (ξM(z)) = −ad∗ξ J(z),



A momentum map that satisfies this relation in called

infinitesimally equivariant.

Among all possible choices of momentum maps for

a given action, there is at most one infinitesimally

equivariant one.



Sufficient conditions: Assume H1(g;R) = H2(g;R) =

0. By the Whitehead lemmas, this is the case if g

is semisimple.

• J is G-equivariant when

Ad∗g−1 ◦J = J ◦Φg

• If G is compact J can be chosen G-equivariant

• If G is connected then infinitesimal equivariance is

equivalent to equivariance.



Define the non-equivariance one-cocycle, or the the

Souriau cocycle, associated to J is the map

σ : G −→ g∗

g 7−→ J(Φg(z))−Ad∗
g−1(J(z)).

Supposse that M is connected. Then:

(i) The definition of σ does not depend on the choice

of z ∈M . M connected is a crucial hypothesis.

(ii) The mapping σ is a g∗-valued one-cocycle on G with

respect to the coadjoint representation of G on g∗.



Define the affine action of G on g∗ with cocycle σ by

Ξ : G× g∗ −→ g∗

(g, µ) 7−→ Ad∗
g−1 µ+ σ(g).

Ξ determines a left action of G on g∗. The momen-

tum map J : M → g∗ is equivariant with respect to the

symplectic action Φ on M and the affine action Ξ on g∗.

The affine orbits Oµ are also symplectic with G-invariant

symplectic structure given by

ω±Oµ(ν)(ξg∗(ν), ηg∗(ν)) = ±〈ν, [ξ, η]〉 ∓Σ(ξ, η),



where the infinitesimal non-equivariance two-cocycle

Σ ∈ Z2(g,R) is given by

Σ : g× g −→ R
(ξ, η) 7−→ Σ(ξ, η) = dσ̂η(e) · ξ,

with σ̂η : G→ R defined by σ̂η(g) = 〈σ(g), η〉.

Reduction Lemma:

gJ(m) ·m = g ·m ∩ ker TmJ = g ·m ∩ (g ·m)ω.

Proof: ξM(m) ∈ g ·m ∩ ker TmJ⇐⇒ 0 = TmJ (ξM(m)) =

− ad∗ξ J(m) + Σ(ξ, ·)⇐⇒ ξ ∈ gJ(m) �



G
µ
 • z

J–1(µ)

G • z

•
 z

symplectically 


orthogonal spaces

The geometry of the reduction lemma.



Momentum maps and isotropy type manifolds.

• m ∈M . Then MGm is a symplectic submanifold of M .

Proof: By the Tube Theorem for proper actions, MGm

is an embedded submanifold and TzMGm = TzMGm =

(TzM)Gm, ∀z ∈ MGm. To show that i∗ω is a symplectic

form, where i : MGm ↪→ M , it suffices to show that

(i∗ω)(z) is nondegenerate on TzMGm, for all z ∈MGm.

H compact Lie group and (V, ω) symplectic representa-

tion space. Then V H is a symplectic subspace of V .



Let 〈〈 , 〉〉 be a H-invariant inner product on V , possible by

compactness of H (average some inner product). Define

T : V → V by 〈〈u, v〉〉 = ω(u,Tv) and note that it is a

H-equivariant isomorphism. Therefore, T(V H) ⊂ V H.

Assume that u ∈ V H satisfies ω(u, v) = 0, ∀v ∈ V H. But

then 0 = ω(u,Tv) = 〈〈u, v〉〉 , ∀v ∈ V H. Put here v = u

and then the positive definiteness of 〈〈 , 〉〉 implies that

u = 0. �



• Let Mm
Gm

be the connected component of MGm con-

taining m and

N(Gm)m := {n ∈ N(Gm) | n · z ∈Mm
Gm for all z ∈Mm

Gm}.

N(Gm)m is a closed subgroup of N(Gm) that contains

the connected component of the identity. So it is also

open and hence Lie(N(Gm)m) = Lie(N(Gm)).

In addition, (N(Gm)/Gm)m = N(Gm)m/Gm so that

Lie (N(Gm)m/Gm) = Lie (N(Gm)/Gm) .



• Lm := N(Gm)m/Gm acts freely properly and canoni-

cally on Mm
Gm

by Ψ(nGm, z) := n · z.

Proof: The map Ψ is clearly well defined. It is easy to

see it is a left action. It is also obvious that it is free. It

is proper, because N(Gm)m is closed. Still need to show

that it is canonical.

For any l = nGm ∈ Lm we have

Ψ∗l (i
∗ω) = (i ◦Ψl)

∗ω = (Φn ◦ i)∗ω = i∗Φ∗nω = i∗ω. �



• The free proper canonical action of Lm := N(Gm)m/Gm

on Mm
Gm

has a momentum map JLm : Mm
Gm
→ (Lie(Lm))∗

given by

JLm(z) := Λ(J|Mm
Gm

(z)− J(m)), z ∈Mm
Gm.

In this expression Λ : (g◦m)Gm → (Lie(Lm))∗ denotes the

natural Lm-equivariant isomorphism given by〈
Λ(β),

d

dt

∣∣∣∣∣
t=0

(exp tξ)Gm

〉
= 〈β, ξ〉,

for any β ∈ (g◦m)Gm, ξ ∈ Lie(N(Gm)m) = Lie(N(Gm)).



• The non-equivariance one-cocycle τ : Mm
Gm
→ (Lie(Lm))∗

of the momentum map JLm is given by the map

τ(l) = Λ(σ(n) + n · J(m)− J(m)).



CONVEXITY

J : M → g∗ coadjoint equivariant. G, M compact. The

intersection of the image of J with a Weyl chamber is a

compact and convex polytope. This polytope is referred

to as the momentum polytope.

Delzant’s theorem proves that the symplectic toric man-

ifolds are classified by their momentum polytopes. A

Delzant polytope in Rn is a convex polytope that is

also:

(i) Simple: there are n edges meeting at each vertex.



(ii) Rational: the edges meeting at a vertex p are of

the form p+ tui, 0 ≤ t <∞, ui ∈ Zn, i ∈ {1, . . . , n}.

(iii) Smooth: the vectors {u1, . . . , un} can be chosen to

be an integral basis of Zn.

Delzant’s Theorem can be stated by saying that

{symplectic toric manifolds} −→ {Delzant polytopes}
(M,ω,Tn,J : M → Rn) 7−→ J(M)

is a bijection.



Marsden-Weinstein Reduction Theorem

• J : M → g∗ equivariant (not essential)

• µ ∈ J(M) ⊂ g∗ regular value of J

• Gµ-action on J−1(µ) is free and proper, where Gµ :=

{g ∈ G | Ad∗g µ = µ}

then (Mµ := J−1(µ)/Gµ, ωµ) is symplectic:

π∗µωµ = i∗µω,

iµ : J−1(µ) ↪→M inclusion,

πµ : J−1(µ)→ J−1(µ)/Gµ projection.



The flow Ft of Xh, h ∈ C∞(M)G, leaves the connected

components of J−1(µ) invariant and commutes with the

G-action, so it induces a flow F
µ
t on Mµ by

πµ ◦ Ft ◦ iµ = F
µ
t ◦ πµ.

F
µ
t is Hamiltonian on (Mµ, ωµ) for the reduced Hamil-

tonian hµ ∈ C∞(Mµ) given by

hµ ◦ πµ = h ◦ iµ.

Moreover, if h, k ∈ C∞(M)G, then {h, k}µ = {hµ, kµ}Mµ.



Proof: Since πµ is a surjective submersion, if ωµ exists,

it is uniquely determined by the condition π∗µωµ = i∗µω.

This relation also defines ωµ by:

ωµ(πµ(z)) (Tzπµ(v), Tzπµ(w)) := ω(z)(v, w),

for z ∈ J−1(µ) and v, w ∈ TzJ−1(µ).

To see that this is a good definition of ωµ, let

y = Φg(z), v′ = TzΦg(v), w′ = TzΦg(w)TzJ
−1(µ),

where g ∈ Gµ. If, in addition Tg·zπµ(v′′) = Tg·zπµ(v′) =

Tzπµ(v) and Tg·zπµ(w′′) = Tg·zπµ(w′) = Tzπµ(w), then

v′′ = v′+ ξM(g · z) ∈ TzJ−1(µ) and w′′ = w′+ ηM(g · z) ∈
TzJ−1(µ) for some ξ, η ∈ gµ and hence



ω(y)(v′′, w′′) = ω(y)(v′, w′) (by the reduction lemma)

= ω(Φg(z))(TzΦg(v), TzΦg(w))

= (Φ∗gω)(z)(v, w)

= ω(z)(v, w) (action is symplectic).

Thus ωµ is well-defined. It is smooth since π∗µωµ is

smooth. Since dω = 0, we get

π∗µdωµ = dπ∗µωµ = di∗µω = i∗µdω = 0.

Since πµ is a surjective submersion, we conclude that

dωµ = 0.



To prove nondegeneracy of ωµ, suppose that

ωµ(πµ(z))(Tzπµ(v), Tzπµ(w)) = 0

for all w ∈ Tz(J−1(µ)). This means that

ω(z)(v, w) = 0 for all w ∈ Tz(J−1(µ)),

i.e., that v ∈ (Tz(J−1(µ)))ω = Tz(G · z) by the Reduction

Lemma. Hence

v ∈ Tz(J−1(µ)) ∩ Tz(G · z) = Tz(Gµ · z)

so that Tzπµ(v) = 0, thus proving nondegeneracy of ωµ.



Let Y ∈ X(Mµ) be the vector field whose flow is F
µ
t .

Therefore, from πµ ◦ Ft ◦ iµ = F
µ
t ◦ πµ it follows

Tπµ ◦Xh = Y ◦ Tπµ on J−1(µ).

Also, hµ ◦ πµ = h ◦ iµ implies that dhµ ◦ Tπµ = dh on

J−1(µ). Therefore, on J−1(µ) we get

π∗µ (iY ωµ) = iXhπ
∗
µωµ = iXhi

∗
µω = i∗µ

(
iXhω

)
= i∗µdh

= d(h ◦ iµ) = d(hµ ◦ πµ) = π∗µdhµ

= π∗µ
(
iXhµωµ

)
,

so iY ωµ = iXhµωµ since πµ is a surjective submersion.

Hence Y = Xhµ because ωµ is nondegenerate.



Finally, for m ∈ J−1(µ) we have

{hµ, kµ}Mµ(πµ(m)) = ωµ(πµ(m))
(
Xhµ(πµ(m)), Xkµ(πµ(m))

)
= ωµ(πµ(m)) (Tmπµ(Xh(m)), Tmπµ(Xk(m)))

= (π∗µωµ)(m) (Xh(m), Xk(m))

= (i∗µω)(m) (Xh(m), Xk(m))

= ω(m) (Xh(m), Xk(m))

= {h, k}(m)

= {h, k}µ(πµ(m)),

which shows that {hµ, kµ}Mµ = {h, k}µ. �



Problems with the reduction procedure

• Momentum map inexistent

• How does one recover the conservation of isotropy?

• Mµ is not a smooth manifold

• G is discrete so momentum map is zero

• M is not a symplectic but a Poisson manifold



ORBIT REDUCTION

Same set up as in the symplectic reduction theorem: M

connected, G acting symplectically, freely, and properly

on M with an equivariant momentum map J : M → g∗.

The connected components of the point reduced spaces

Mµ can be regarded as the symplectic leaves of the Pois-

son manifold
(
M/G, {·, ·}M/G

)
in the following way. Form

a map [iµ] : Mµ → M/G defined by selecting an equiv-

alence class [z]Gµ ∈ Mµ for z ∈ J−1(µ) and sending it

to the class [z]G ∈ M/G. This map is checked to be

well-defined and smooth.



We then have the commutative diagram

J−1 (µ) M

Mµ M/G

? ?

-

-

πµ π

iµ

[iµ]

One then checks that [iµ] is a Poisson injective immer-

sion. Moreover, the [iµ]-images in M/G of the connected

components of the symplectic manifolds (Mµ,Ωµ) are its

symplectic leaves. As sets,



[iµ] (Mµ) = J−1 (Oµ) /G,

where Oµ ⊂ g∗ is the coadjoint orbit through µ ∈ g∗.

MOµ := J−1 (Oµ) /G

is called the orbit reduced space associated to the

orbit Oµ. The smooth manifold structure (and hence

the topology) on MOµ is the one that makes

[iµ] : Mµ→MOµ

into a diffeomorphism.



An injectively immersed submanifold of S of Q is called

an initial submanifold of Q if for any smooth manifold

P , a map g : P → S is smooth if and only if ι ◦ g : P → Q

is smooth, where ι : S ↪→ Q is the inclusion.

Most prop. of submanifolds hold for initial submanifolds.

Symplectic Orbit Reduction Theorem

• The momentum map J is transverse to the coadjoint

orbit Oµ and hence J−1(Oµ) is an initial submanifold of

M . Moreover, the projection πOµ : J−1 (Oµ)→ MOµ is a

surjective submersion.



• MOµ is a symplectic manifold with the symplectic form

ΩOµ uniquely characterized by the relation

π∗OµΩOµ = J∗Oµω
−
Oµ + i∗OµΩ,

where JOµ is the restriction of J to J−1 (Oµ) and iOµ :

J−1 (Oµ) ↪→M is the inclusion.

• The map [iµ] : Mµ → MOµ is a symplectic diffeomor-

phism.

• Let h be a G-invariant function on M and define h̃ :

M/G→ R by h = h̃◦π. Then the Hamiltonian vector field

Xh is also G-invariant and hence induces a vector field



on M/G, which coincides with the Hamiltonian vector

field X
h̃
. Moreover, the flow of X

h̃
leaves the symplectic

leaves MOµ of M/G invariant. This flow restricted to

the symplectic leaves is again Hamiltonian relative to

the symplectic form ΩOµ and the Hamiltonian function

hOµ given by

hOµ ◦ πOµ = h ◦ iOµ ⇐⇒ hOµ = h̃|Oµ.

• If h, k ∈ C∞(M)G, then

{h, k}Oµ = {hOµ, kOµ}MOµ.

This is a theorem in the Poisson category.



COTANGENT BUNDLE REDUCTION

NOTATIONS AND DEFINITIONS

Given is a smooth free proper action Φ : G×Q→ Q and

then lift the action to T ∗Q; it preserves the one-form

and has an equivarant momentum map J : T ∗Q → g∗

given by

〈J(αq), ξ〉 = αq
(
ξQ(q)

)
, for all ξ ∈ g.

A connection one-form A ∈ Ω1(Q; g) on the principal

bundle π : Q→ Q/G satisfies

• A(q)
(
ξQ(q)

)
= ξ for all ξ ∈ g

• Φ∗gA = Adg ◦A ⇐⇒ A(g · q)(g · vq) = Adg (A(q)(vq))



The horizontal bundle H := kerA; TQ = H⊕V , where

Vq := {ξQ(q) | ξ ∈ g} is the vertical space at q ∈ Q.

We have TqΦg(Hq) = Hg·q for all g ∈ G and q ∈ Q. The

horizontal bundle characterizes the connection.

The curvature B = CurvA ∈ Ω2(Q; g) of A is defined by

B(q)(uq, vq) := dA(q) (Horq uq,Horq vq), where Horq uq is

the horizontal component of uq. The Cartan structure

equations state

B(X,Y ) = dA(X,Y )− [A(X),A(Y )] for all X,Y ∈ X(Q).



COTANGENT BUNDLE REDUCTION:

EMBEDDING VERSION

What is (T ∗Q)µ concretely?

Form the left principal Gµ-bundle πQ,Gµ : Q → Qµ :=

Q/Gµ.The momentum map Jµ : T ∗Q→ g∗µ is

Jµ(αq) = J(αq)|gµ

Let µ′ := µ|gµ ∈ g∗µ. Notice that there is a natural inclu-

sion of submanifolds

J−1(µ) ⊂ (Jµ)−1(µ′).



Since the actions are free and proper, µ and µ′ are regular

values, so these sets are indeed smooth manifolds. Note

that, by construction, µ′ is Gµ-invariant.

There will be two key assumptions relevant to the em-

bedding version of cotangent bundle reduction. Namely,

CBR1. In the above setting, assume there is

a Gµ-invariant one-form αµ on Q with values in

(Jµ)−1(µ′).

and the stronger condition



CBR2. Assume that αµ in CBR1 takes values

in J−1(µ).

Then there is a unique two-form βµ on Qµ such that

π∗Q,Gµβµ = dαµ.

Since πQ,Gµ is a submersion, βµ is closed (it need not

be exact). Let

Bµ = π∗Qµβµ ∈ Ω2(T ∗Qµ),

where πQµ : T ∗Qµ → Qµ is the cotangent bundle projec-

tion. Also, to avoid confusion with the canonical sym-

plectic form Ωcan on T ∗Q, we shall denote the canonical



symplectic form on T ∗Qµ, the cotangent bundle of µ-

shape space, by ωcan.

• If condition CBR1 holds, then there is a symplectic

embedding

ϕµ : ((T ∗Q)µ,Ωµ)→ (T ∗Qµ, ωcan −Bµ),

onto a submanifold of T ∗Qµ covering the base Q/Gµ.

• This map ϕµ gives a symplectic diffeomorphism of

((T ∗Q)µ,Ωµ) onto (T ∗Qµ, ωcan−Bµ) if and only if g = gµ.



• If CBR2 holds, then the image of ϕµ equals the vector

subbundle [TπQ,Gµ(V )]◦ of T ∗Qµ, where V ⊂ TQ is the

vector subbundle consisting of vectors tangent to the G-

orbits, that is, its fiber at q ∈ Q equals Vq = {ξQ(q) | ξ ∈

g}, and ◦ denotes the annihilator relative to the natural

duality pairing between TQµ and T ∗Qµ.

• Assume that A ∈ Ω1(Q; g) is a connection on the prin-

cipal bundle πQ,G : Q→ Q/G. Then αµ(q) := 〈µ,A(q)〉 =

A(q)∗µ ∈ Ω1(Q) satisfies CBR2. This implies that Bµ

is the pull back to T ∗Qµ of dαµ ∈ Ω2(Q), which equals

the µ-component of the two form B+ [A,A] ∈ Ω2(Q; g),

where B is the curvature of A.



COTANGENT BUNDLE REDUCTION:

BUNDLE VERSION

Again we will utilize a choice of connection A on the

shape space bundle πQ,G : Q → Q/G. A key step in the

argument is to utilize orbit reduction and the identifica-

tion (T ∗Q)µ ∼= (T ∗Q)O. Q/G is called the shape space.

The reduced space (T ∗Q)µ is a locally trivial fiber bundle

over T ∗(Q/G) with typical fiber O:

(T ∗Q)µ
O−→ T ∗(Q/G)



ASSOCIATED BUNDLES

G also acts on a manifold V on the left. Then g ·(q, v) :=

(g · q, g · v) is a free proper action so form P ×G V :=

(P × ×V )/G. This is a locally trivial fiber bundle over

Q/G all of whose fibers are diffeomorphic to V .

If V is a representation space of G, then Q×G V → Q/G

is a vector bundle. In particular, if V is g or g∗ and the G-

action is the adjoint or coadjoint action, then g̃ := Q×Gg

is the adjoint bundle and its dual g̃∗ := Q ×G g∗ is the

coadjoint bundle.



Unlike the connection form A, the curvature drops to

an adjoint bundle valued two-form B̄ on the base Q/G,

namely,

B̄(π(q)) (Tqπ(uq), Tqπ(vq)) := [q,B(q)(uq, vq)] ∈ g̃

PULL BACK COMMUTES WITH ASSOCIATING

• π : P → M left principal G-bundle. τ : N → M surjec-

tive submersion. Define the pull back bundle over N

by

P̃ := {(n, p) ∈ N × P | π(p) = τ(n)}.



P̃ P

N M

? ?

-

-

ππ̃

τ̃N,P

τ

π̃ : P̃ → N and τ̃N,P : P̃ → P are the projections on

the first and second factors. P̃ is a smooth manifold of

dimension dimP + dimN − dimM and the free G-action

on P induces a free G-action on P̃ given by

g · (n, p) = (n, gp)

with respect to which, π̃ is the projection on the space

of orbits.



P̃ is a left principal G-bundle over N and the map τ̃N,P

is a submersion with fiber over the point p ∈ P equal to

τ̃−1
N,P(p) = {(n, p) ∈ N × P | π(p) = τ(n)}

= τ−1(π(p))× {p} ⊂ P̃

and hence diffeomorphic to τ−1(π(p)).

Now suppose that there is a left action of G on a man-

ifold V . There are two associated bundles that one can

construct: P ×G V and P̃ ×G V . They are fiber bundles

over M and N respectively, both with fibers diffeomor-

phic to V .



The associated bundle P̃ ×GV → N is obtained from the

principal bundle π : P → M , the surjective submersion

τ : N → M , and the G-manifold V by pull back and

association.

These operations can be reversed. First one forms the

associated bundle πE : [p, v] ∈ E := P ×G V 7→ π(p) ∈ M

and then one pulls it back by the surjective submersion

τ : N → M . One obtains the pull back bundle π̃E : Ẽ →

N , whose fibers are all diffeomorphic to V , defined by

the following commutative diagram



Ẽ E = P ×G V

N M

? ?

-

-

πEπ̃E

τ̃N,E

τ

Ẽ := {(n, [p, v]) | τ(n) = πE([p, v]) = π(p)}

π̃E(n, [p, v]) := n, τ̃N,E(n, [p, v]) := [p, v].

The fibers of τ̃N,E are equal to

τ̃−1
N,E([p, v]) = {(n, [p, v]) | τ(n) = πE([p, v]) = π(p)}

= τ−1(π(p))× {[p, v]} ' τ−1(π(p)).



There is a canonical bundle isomorphism over M

[(n, p), v] ∈ P̃ ×G V −→ (n, [p, v]) ∈ Ẽ.

STERNBERG SPACE

G×Q→ Q free proper action, π : Q→ Q/G

A ∈ Ω1(Q; g) connection, V (Q), H(Q) vertical and hor-

izontal subbundles of TQ, Vq(Q) = ker Tqπ, Hq(Q) =

kerA(q) , TQ = V (Q)⊕H(Q).

Pull back π : Q → Q/G by the cotangent bundle pro-

jection τQ/G : T ∗(Q/G) → Q/G to get the G-principal



bundle

Q̃ = {(α[q], q) ∈ T
∗(Q/G)×Q | [q] = π(q), q ∈ Q}

over T ∗(Q/G) with fiber over α[q] diffeomorphic to π−1([q]).

Recall that the G-action on Q̃ is given by g · (α[q], q) :=

(α[q], g · q) for any g ∈ G and (α[q], q) ∈ Q̃.

Q̃ Q

T ∗(Q/G) Q/G

? ?

-

-

ππ̃

τ̃T ∗(Q/G),Q

τQ/G



Q̃ is a vector bundle over Q which is isomorphic to the

annihilator V (Q)◦ ⊂ T ∗Q of V (Q) ⊂ TQ. For each q ∈ Q,

Vq(Q)◦ := {αq ∈ T ∗qQ |
〈
αq, ξQ(q)

〉
= 0} ⊂ T ∗qQ

Form the coadjoint bundle of Q̃, the Sternberg space

S := Q̃×G g∗.

The map ϕA : Q̃× g∗→ T ∗Q given by

ϕA
((
α[q], q

)
, µ
)

:= T ∗q π(α[q]) +A(q)∗µ

is a G-equivariant vector bundle isomorphism over Q. It

descends to a vector bundle isomorphism over Q/G

ΦA : S → (T ∗Q)/G.



The Sternberg space Poisson bracket {·, ·}S is de-

fined as the pull back by ΦA of the Poisson bracket of

(T ∗Q)/G.

WEINSTEIN SPACE

Form the coadjoint bundle g̃∗ := Q ×G g∗. Then pull it

back by the cotangent bundle projection τQ/G : T ∗(Q/G)→

Q/G and get

W :={(α[q], [q, µ]) ∈ T ∗(Q/G)× g̃∗ |

τQ/G(α[q]) = πg̃∗([q, µ]) := [q]}



W g̃∗

T ∗(Q/G) Q/G

? ?

-

-

πg̃∗π̃g̃∗

τ̃T ∗(Q/G),g̃∗

τQ/G

π̃g̃∗, τ̃T ∗(Q/G),g̃∗ first and second projections.

W is a vector bundle over T ∗(Q/G) with fiber π̃−1
g̃∗ (α[q]) =

π−1
g̃∗ ([q]) = {[q, µ] | µ ∈ g∗} over α[q].

W is also a vector bundle over Q/G relative to the pro-

jection (α[q], [q, µ]) ∈ W 7→ [q] ∈ Q/G; the fiber over [q]



equals W[q] = T ∗[q](Q/G) ⊕ g̃∗[q]. That is, we have the

immediate identification

W = T ∗(Q/G)⊕ g̃∗

as vector bundles of Q/G.

There exists a vector bundle isomorphism over Q/G

ΨA : [αq] ∈ (T ∗Q)/G 7−→ (hor∗q(αq), [q,J(αq)]) ∈W,

where horq := (Tqπ|H(Q)q)
−1 : T[q](Q/G) → Hq(Q) ⊂ TqQ

is the horizontal lift operator. Thus hor∗q : T ∗qQ →
T ∗[q](Q/G) is a linear surjective map whose kernel is the

annihilator H(Q)◦q of the horizontal space.



The Weinstein space Poisson bracket {·, ·}W is the

push forward by ΨA of the Poisson bracket of (T ∗Q)/G.

Recall that pull back and association commute.

The following diagram of vector bundle isomorphisms

over Q/G is commutative

S W
@
@
@
@
@
@
@
@
@
@R �

�
�
�
�
�
�
�
�
��

-
Φ

ΦA ΨA

(T ∗Q)/G



Φ : (S, {·, ·}S) → (W, {·, ·}W) is an isomorphism of Pois-

son manifolds. Also, Φ∗ : W ∗α[q]
→ S∗α[q]

restricted to each

fiber (which is isomorphic to g) is an isomorphism of Lie

algebras for every α[q] ∈ T ∗(Q/G), that is, Φ∗ : W ∗ → S∗

is an isomorphism of Lie algebra bundles.

COVARIANT EXTERIOR DERIVATIVES

ON ASSOCIATED BUNDLES

π : P → M left principal G-bundle, V a left representa-

tion space of G, horp : Tπ(p)M → TpP the horizontal lift

operator at p ∈ P of the given connection A ∈ Ω1(P ; g).

Then the horizontal lift operator of the induced affine



connection on the associated vector bundle πE : E =

P ×G V →M induced by A is given by

hor[p,v](um) := T(p,v)πP×V (horp(um),0) ,

where p ∈ P , v ∈ V , m = π(p) = [p], um ∈ TmM , πP×V :

P ×V → E is the orbit map, and [p, v] := πP×V (p, v) ∈ E.

The covariant derivative dAf of f ∈ C∞(P ×G V ) rela-

tive to the affine connection given by this horizontal lift

operator is

dAf([p, v])(um) := df([p, v])
(
hor[p,v](um)

)
∈ T ∗mM.



COVARIANT EXTERIOR DERIVATIVES

ON PULL BACK VECTOR BUNDLES

π : E → M vector bundle with an affine connection ∇,

N another manifold, τ : N →M a surjective submersion.

Denote by Ẽ := {(n, ε) | τ(n) = π(ε)} the pull back

bundle over N , which is a vector bundle π̃ : Ẽ → N ,

where π̃ is the projection on the first factor N . Denote

by τ̃N,E : Ẽ → E the projection on the second factor E

and recall that π ◦ τ̃N,E = τ ◦ π̃. Denote for any ε ∈ E by

horε : Tπ(ε)M → TεE the horizontal lift operator of the

connection ∇.



Define the horizontal lift operator hor(n,ε) : TnN → T(n,ε)Ẽ

hor(n,ε)(vn) := (vn,horε Tnτ(vn))

for (n, ε) ∈ Ẽ, vn ∈ TnN .

If f ∈ C∞(Ẽ), its covariant exterior derivative ∇̃f(n, ε) ∈

T ∗nN is defined by

∇̃f(n, ε)(vn) := df(n, ε)
(

hor(n,ε)(vn)
)
,

where (n, ε) ∈ P̃ and vn ∈ TnN .



COVARIANT EXTERIOR DERIVATIVES

ON S AND W

Recall that π̃ : Q̃ → T ∗(Q/G) is a principal G-bundle,

the pull back of π : Q → Q/G over the cotangent bun-

dle projection τQ/G : T ∗(Q/G) → Q/G. Recall that

τ̃T ∗(Q/G),Q : Q̃ → Q is the projection on the seccond

factor. So Ã := τ̃∗T ∗(Q/G),QA ∈ Ω1(Q̃; g) is a connection.

Its horizontal lift is

hor(α[q],q)

(
vα[q]

)
=

(
vα[q],horq

(
Tα[q]τQ/G(vα[q])

))
.

H(α[q],q)
(Q̃) = Tα[q](T

∗(Q/G))×Hq(Q).



For the case of the associated bundle π̃Q̃ : S → T ∗(Q/G),

S := Q̃×G g∗, π̃Q̃([(α[q], q), µ]) = α[q], the formula for the

associated horizontal lift at s = [(α[q], q), µ] ∈ S becomes

hors(vα[q]) = T((α[q],q),µ)πQ̃×g∗
(
hor(α[q],q)

vα[q],0
)

= T((α[q],q),µ)πQ̃×g∗
((
vα[q],horq(Tα[q]τQ/G(vα[q]))

)
,0
)
,

πQ̃×g∗ : Q̃× g∗→ S = Q̃×G g∗ is the orbit projection.

Let f ∈ C∞(S), s = [(α[q], q), µ] ∈ S. The pull back con-

nection one-form Ã ∈ Ω1(Q̃; g) defines hence a covector



dSÃf(s) ∈ T ∗π̃Q̃(s)T
∗(Q/G) by

dSÃf(s)
(
vα[q]

)
:= df(s)

(
hors

(
vα[q]

))
=

df(s)
(
T((α[q],q),µ)πQ̃×g∗

((
vα[q],horq(Tα[q]τQ/G(vα[q]))

)
,0
))
,

where π̃Q̃(s) = α[q], and and vα[q] ∈ Tα[q] (T ∗(Q/G)).

W is the pull back of the vector bundle πg̃∗ : g̃∗Q/G,

which has an affine connection as an associated bundle,

by τQ/G : T ∗(Q/G) → Q/G. So there is an induced ∇̃W

covariant derivative on W . If f ∈ C∞(W ) then

∇̃Wf(α[q], [q, µ]) = df(α[q], [q, µ]) ◦ hor(α[q],[q,µ])

∈ T ∗α[q]
(T ∗(Q/G)).



POISSON BRACKETS ON S AND W

Let s = [(α[q], q), µ] ∈ S and v = [q, µ] ∈ g̃∗. The Poisson

bracket of f, g ∈ C∞(S) is given by

{f, g}S(s) = ΩQ/G(α[q])
(
dSÃf(s)],dSÃg(s)]

)
+

〈
v, B̃(α[q])

(
dSÃf(s)],dSÃg(s)]

)〉
−
〈
s,

[
δf

δs
,
δg

δs

]〉
,

where ΩQ/G is the canonical symplectic form on T ∗(Q/G),

B̃ ∈ Ω2(T ∗(Q/G); g̃) is thus the g̃-valued two-form on

T ∗(Q/G) given by B̃ = τ∗Q/GB̄, with B̄ ∈ Ω2(Q/G, g̃),

] : T ∗(T ∗(Q/G))→ T (T ∗(Q/G)) is the vector bundle iso-

morphism induced by ΩQ/G, and δf/δs ∈ S∗ = Q̃×G g is



the usual fiber derivative of f at the point s ∈ S, that is,〈
s′,
δf

δs

〉
:=

d

dt

∣∣∣∣∣
t=0

f
(
[(α[q], q), µ+ tν]

)
for any s′ := [(α[q], q), ν)] ∈ S.

The third term has a more convenient expression. De-

note by δf/δv ∈ g̃ the unique element in the fiber at [q]

of the adjoint bundle g̃ defined by the equality〈
[q, ν],

δf

δv

〉
=

d

dt

∣∣∣∣∣
t=0

f
(
[(α[q], q), µ+ tν]

)
=

〈
[(α[q], q), ν)],

δf

δs

〉

for any ν ∈ g∗, where s = [(α[q], q), µ] ∈ S = Q̃×G g∗ and

v = [q, µ] ∈ g̃∗.



Thus δf/δv is an element in g̃ over the point [q] ∈ Q/G

and can therefore be paired with [q, ν] ∈ g̃∗. Note that

we abuse here the symbol δf/δv which should denote the

usual fiber derivative of a function on the vector bundle

g̃∗; however, this makes no a priori sense in this case,

since f ∈ C∞(S) is not a function on g̃∗. Nevertheless

we retain this notation for it is suggestive of the result.

With this definition, for s = [(α[q], q), µ] ∈ S and v =

[q, µ] ∈ g̃∗, we have〈
s,

[
δf

δs
,
δg

δs

]〉
=

〈
v,

[
δf

δv
,
δg

δv

]〉
.



w = (α[q], [q, µ]), v = [q, µ], B̃ = τ∗Q/GB̄ ∈ Ω2 (T ∗(Q/G); g̃).

The Poisson bracket of f, g ∈ C∞(W ) is given by

{f, g}W(w) = ΩQ/G(α[q])
(
∇̃WA f(w)], ∇̃WA g(w)]

)
+

〈
v, B̃(α[q])

(
∇̃WA f(w)], ∇̃WA g(w)]

)〉
−
〈
w,

[
δf

δw
,
δg

δw

]〉
.

δf/δw ∈W ∗ is the fiber derivative of f in W .

What are the symplectic leaves?



MINIMAL COUPLING CONSTRUCTION

Construction of presymplectic forms on associated bun-

dles.

σ : P → B a left principal G-bundle, A ∈ Ω1(P ; g) a con-

nection one-form on P , (M,ω) a Hamiltonian G-space

with equivariant momentum map J : M → g∗, and de-

note by ΠP : P ×M → P and ΠM : P ×M → M the two

projections. Then
〈
Π∗MJ,Π∗PA

〉
∈ Ω1(P ×M) defined by

〈Π∗MJ,Π∗PA〉 (p,m)(up, vm) := 〈J(m),A(p)(vp)〉



for all p ∈ P,m ∈ M,up ∈ TpP , and vm ∈ TmM , is a

G-invariant one-form.

Thus, if ξP×M = (ξP , ξM) is the infinitesimal generator

of the diagonal G-action on P ×M defined by ξ ∈ g, we

have £ξP×M

〈
Π∗MJ,Π∗PA

〉
= 0. A computation shows

iξP×M
(
d 〈Π∗MJ,Π∗PA〉+ Π∗Mω

)
= 0.

Since d
〈
Π∗MJ,Π∗PA

〉
+Π∗Mω is also G-invariant, it follows

that the closed two-form d
〈
Π∗MJ,Π∗PA

〉
+Π∗Mω descends

to a closed two form ωA ∈ Ω2(P ×GM), that is, ωA is

characterized by the relation

ρ∗ωA = d 〈Π∗MJ,Π∗PA〉+ Π∗Mω,



where ρ : P ×M → P ×GM is the projection to the orbit

space.

Now assume, in addition, that the base (B,Ω) is a sym-

plectic manifold and denote by σM : P ×G M → B the

associated fiber bundle projection given by σM([p,m]) :=

σ(p). Then σ∗MΩ is also a closed two-form on P ×GM

and one gets the minimal coupling presymplectic form

ωA+σ∗MΩ. In general, this presymplectic form is degen-

erate.



SYMPLECTIC FORM ON Q̃×G O

Apply the minimal coupling construction: P = Q̃, B =

T ∗(Q/G), Ω = ΩQ/G = −dΘQ/G, σ = π̃ : (α[q], q) ∈
Q̃ 7→ α[q] ∈ T ∗(Q/G) , the connection on this principal G-

bundle is Ã = τ̃∗T ∗(Q/G),QA ∈ Ω1(Q̃; g), where τ̃T ∗(Q/G),Q :

Q̃→ Q is the projection on the second factor, (M,ω) =

(O, ω−O), J = JO : O → g∗ is given by JO(µ) = −µ for any

µ ∈ g∗, and ρ : Q̃×O → Q̃×G O is the quotient map for

the diagonal G-action. Note that ρ = πQ̃×g∗|Q̃×O where

πQ̃×g∗ : Q̃ × g∗ → S is the projection onto the G-orbit

space. Then σM = π̃Q̃ : Q̃ ×G O → T ∗(Q/G) is given by

π̃Q̃([(α[q], q), µ]) = α[q].



Denote the two form ωA in this situation by ω̃−O and

hence it is uniquely characterized by the relation

ρ∗ω̃−O = d
〈
Π∗OJO,Π

∗
Q̃Ã

〉
+ Π∗Oω

−
O,

where ΠQ̃ : Q̃ × O → Q̃ and ΠO : Q̃ × O → O are the

projections on the two factors.

The two-form ω̃−O + π̃∗
Q̃

ΩQ/G on Q̃ ×G O is obtained by

reduction.

• Recall: The G-equivariant vector bundle isomorphism

ϕA : Q̃ × g∗ → T ∗Q is defined by ϕA
((
α[q], q

)
, µ
)

:=

T ∗q π(α[q]) +A(q)∗µ for any
((
α[q], q

)
, µ
)
∈ Q̃× g∗.



• Let JT ∗Q : T ∗Q → g∗ be the momentum map of the

lifted G-action. Define JA := JT ∗Q ◦ ϕA : Q̃ × g∗ → g∗.

Then JA = Πg∗, the projection on the second factor.

Hence J−1
A (O) = Q̃×O.

• ΩA = −dΘA is a symplectic form on Q̃× g∗, where

ΘA
((
α[q], q

)
, µ
) ((

uα[q], vq
)
, ν
)

=
〈
α[q], Tqπ(vq)

〉
+ 〈µ,A(q)(vq)〉((

α[q], q
)
, µ
)
∈ Q̃× g∗,

(
uα[q], vq

)
∈ T(

α[q],q
)Q̃, ν ∈ g∗.

• So JA : Q̃× g∗→ g∗ is the equivariant momentum map

of the canonical G-action on the symplectic manifold(
Q̃× g∗,ΩA

)
.



• Therefore, Q̃×G O = J−1
A (O)/G has the reduced sym-

plectic form ω̃−O+ π̃∗
Q̃

ΩQ/G.

The symplectic leaves of S are the connected compo-

nents of the symplectic manifolds
(
Q̃×G O, ω̃−O+ π̃∗

Q̃
ΩQ/G

)
,

where O is a coadjoint orbit in g∗.



Symplectic leaves of W

Recall that Φ : S →W given by

Φ
([

(α[q], q), µ
])

=
(
α[q], [q, µ]

)

is a Poisson diffeomorphism. Therefore, the symplectic

leaves of the Poisson manifold (W, { , }W) are the con-

nected components of the symplectic manifolds

(
Φ
(
Q̃×G O

)
,Φ∗

(
ω̃−O+ π̃∗Q̃ΩQ/G

))
.

Who are they?



Φ
(
Q̃×G O

)
=

{(
α[q], [q, µ]

)
| q ∈ Q,α[q] ∈ T[q](Q/G), µ ∈ O ⊂ g∗

}
= T ∗(Q/G)⊕ (Q×G O)

⊂W = T ∗(Q/G)⊕ g̃∗ = T ∗(Q/G)⊕ (Q×G g∗).

Here, T ∗(Q/G)⊕(Q×GO) is a fiber subbundle, not a vec-

tor subbundle, of T ∗(Q/G)⊕ g̃∗; we still use the Whitney

sum symbol, even though it is a fibered product of fiber

bundles, to recall the fact that it is a subbundle of the

Whitney sum bundle W = T ∗(Q/G)⊕ g̃∗.



The closed G-invariant two-form ω−Q×O ∈ Ω2(Q×O) de-

fined by

ω−Q×O(q, µ)
(
(uq,− ad∗ξ µ), (vq,−ad∗η µ)

)
:= −d(A× idO)(q, µ)

(
(uq,−ad∗ξ µ), (vq,− ad∗η µ)

)
+ ω−O(µ)

(
−ad∗ξ µ,−ad∗η µ

)
,

where A× idO ∈ Ω1(Q× g∗) is given by

(A× idO) (q, µ)
(
uq,− ad∗ξ µ

)
= 〈µ,A(q)(uq)〉 ,

drops to a closed two-form ω−Q×GO ∈ Ω2 (Q×G O), that

is, ω−Q×GO is uniquely determined by the identity

π∗Q×Oω
−
Q×GO = ω−Q×O,

where πQ×O : Q×O → Q×GO the orbit space projection.



The symplectic leaves of W are the connected compo-

nents of the symplectic manifolds

(
T ∗(Q/G)⊕ (Q×G O),Π∗T ∗(Q/G)ΩQ/G + Π∗Q×GOω

−
Q×GO

)
,

where O is a coadjoint orbit in g∗, ΩQ/G is the canonical

symplectic form on T ∗(Q/G), ω−Q×GO is the closed two-

form on Q×GO given above, and ΠT ∗(Q/G) : T ∗(Q/G)⊕

(Q ×G O) → T ∗(Q/G), ΠQ×GO : T ∗(Q/G) ⊕ (Q ×G O) →

Q×G O are the projections on the two factors.
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