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OVERVIEW OF THE COURSE

e Symplectic manifolds

e Poisson manifolds

e Lie group actions

e Abstract symmetry reduction



e Cotangent bundle reduction

e Lagrangian approach to reduction

e Conservation laws via generalized

distributions

e T he optimal momentum map and

groupoids

e Optimal reduction



Singular point reduction

Singular orbit reduction

Poisson reduction

Coisotropic reduction

Cosymplectic reduction



SYMPLECTIC MANIFOLDS

A symplectic manifold is a pair (M, w), where M is
a manifold and w € Q2(M) is a closed non—degenerate

two—form on M, that is,

e dw =0

e fOr every m € M, the map
v € TymM — w(m)(v,-) € T) M

IS a linear isomorphism.



If w is allowed to be degenerate, (M, w) is called a
presymplectic manifold. A Hamiltonian dynamical
system is a triple (M, w, h), where (M, w) is a symplectic
manifold and h € C°°(M) is the Hamiltonian function
of the system. By non—degeneracy of the symplectic
form w, to each Hamiltonian system one can associate
a Hamiltonian vector field X; € X(M), defined by the
equality

ix,w = w(Xy, ) =dh.



Example V vector space, V* its dual. Let Z =V x V*.

The canonical symplectic form €2 on Z is defined by

Q((v1,a1), (v2,a2)) 1= (az,v1) — (a1, v2).

(2] = [_01 (1)] =:J

Example @ manifold, T#Q its cotangent bundle, mg :
T*(Q) — @ projection. The canonical one-form © on

T*() defined by
O(B) -vg 1= (B, Tsmg (vg)), BETQ, vz e Tg(T Q).

In canonical coordinates © = p;dq"



The canonical symplectic form €2 on the cotangent
bundle T*(Q is defined by 2 = —d©.

Darboux theorem: Locally w|y = Y% ; dg’ A dp;.

In canonical coordinates, Xj; is determined by the well-

known Hamilton equations,
dg*  Oh dp;  Oh

dt ~ Op;’ dt ~  9q"

The Poisson bracket of f,g € C°°(M) is the function
{f, g} € C>°(M) defined by

{f, 9}(z) = w(z) (Xf(2), Xg(2)).



In canonical coordinates, the Poisson bracket has the

form

n <8f dg B dg 8f)

{fa g} - z';l 8q”3 api 8q”3 api



POISSON MANIFOLDS

e (M, {-,-}) Poisson manifold if (C*°(M),{-,-}) Lie al-
gebra such that

{fg,h} = flg,h} + g{f,h}

e Casimir functions are the elements of the center of

(C=2 (M), {- 1)

e Hamiltonian vector field of h € C°(M)

£th = <df7 Xh> = Xh[f] — {f7 h}7 for all f € COO(M)



Example: The Lie-Poisson bracket. The dual g* of
a Lie algebra g is a Poisson manifold with respect to the
+-Lie—Poisson brackets {-,-}+ defined by

{frg}+(pn) ==+ <u, Ei gZD

where g_/];’ € g Is defined by

of

(v M} =Df(u) v,

for any v € g*. The Hamiltonian vector field of h €

C®(g*) (f ={f.h} & X ={-, f}) is given by

*

Xp(p) = Fadsy, /5,4, HEG.



Example: Frozen Lie-Poisson bracket. Same no-
tations as before. Let v € g* and define the frozen
Lie—Poisson brackets {-,-}+ defined by

{fi935(u) == <V, B/J:’((;ZD -
The Hamiltonian vector field of h € C°°(g*) is given by

*

Xh(,LL) — :Fadgh/&uya M ~ g .

The Lie-Poisson and frozen Lie-Poisson bracket are com-
patible, that is, {,}+ + s{, }'L is also a Poisson bracket

on g* for any v € g* and any s € R.



Example: Operator Algebra Brackets. H be a com-

plex Hilbert space.

e S(H), trace class operators

e HS(H), Hilbert-Schmidt operators

e R(H), compact operators

e °B(H), bounded operators

They form involutive Banach algebras. &(H), H6(H),
R(H) are self adjoint ideals in B(H).



S(H) C HG(H) C R(H) C B(H)

R(H)* =6(H), HE(H)" =H6(H), G(H)" =DB(H),;

the right hand sides are all Banach Lie algebras. These
dualities are implemented by the strongly nondegenerate

pairing
(z, p) = trace (zp)

where x € 6(H), p € R(H) for the first isomorphism,
p,x € HS(H) for the second isomorphism, and z € B(H),
p € &6(H) for the third isomorphism.



The Banach spaces 6(H), H6(H), and K(H) are Ba-
nach Lie-Poisson spaces in a rigorous functional analytic

sense. T he Lie-Poisson bracket becomes in this case

where p is an element of G(H), HGS(H), or K(H), respec-
tively. The bracket [DF(p), DH(p)] denotes the commu-
tator bracket of operators. The Hamiltonian vector field

associated to H is given by



The Poisson tensor. The derivation property of the
Poisson bracket implies that for any two functions f, g €
C°°(M), the value of the bracket {f, g}(z) on f only
through df(z) which allows us to define a contravariant

antisymmetric two-tensor B € A2(M) by

B(Z)(Oéz, 62’) — {f7 g}(Z),

with df(z) = a, and dg(z) = B,. This tensor is called
the Poisson tensor of M. The vector bundle map B¢ :
T*M — T M naturally associated to B is defined by

B(2)(az, Bz) = {az, B*(B2)).



Its range D := B¥(T*M) C TM is called the character-
Istic distribution. For any point m € M, the dimension
of D(m) as a vector subspace of T, M is called the rank

of the Poisson manifold (M, {-,-}) at the point m.



The Weinstein coordinates of a Poisson manifold.
Let (M,{-,-}) be a m—dimensional Poisson manifold and
zo € M a point where the rank of (M,{-,-}) equals 2n,
0 < 2n < m. There exists a chart (U, ¢) of M whose do-
main contains the point zg and such that the associated

local coordinates, denoted by

1 1 —2
(qj...,qnjp]-,...’pnjz 7"'7Zm n))

satisfy
{d", &’} = {pi,pj} = {d". 2"} = {p;, 2"} = 0,

and {qi,pj} =4t foralli,j,k, 1 <i,j<n,1<k<m-—2n.



For all k,1, 1 < k,l < m—2n, the Poisson bracket {z*, 2!}
is a function of the local coordinates z1, ..., 2™m—2" exclu-
sively, and vanishes at zg. Hence, the restriction of the
bracket {-,-} to the coordinates z1,...,2™ 2" induces a
Poisson structure that is usually referred to as the trans-

verse Poisson structure of (M, {-,-}) at m.

If the rank is equal to 2n in a neighborhood of zg, then

the transverse structure is zero.



A smooth mapping ¢ : (M17 {'7'}1) — (M27 {'7°}2) IS

canonical or Poisson if for all g, h € C*°(M>) we have

v {g, h}o ={¥"9, v g}1.

In the symplectic category, ¢ : (M1,w1) — (Mo, wo)

canonical or symplectic if

*
Y Wy = wi.

e Symplectic maps are immersions.



e A diffeomorphism ¢ : M1 — M»> between two sym-
plectic manifolds (Mq,wq1) and (Mo, w>) is symplectic

if and only if it is Poisson.

e If the symplectic map ¢ : M7 — Mo, is not a diffeo-

morphism it may not be a Poisson map.

e A diffeomorphism ¢ : T*S — T*(Q) preserves the canon-
ical one-forms ©g on T*Q and ©¢ on T*S if and only

if ¢ is the cotangent lift T*f of some diffeomorphism

f:Q—>5.



Proof Suppose that f : Q — S is a diffeomorphism.
Then for 8 € T*S and v € Tg(T™*S) we have

(T*f)" ©q) (B) -v=0q (T*f(B))  TT*f(v)
= (T"f(8), (Tmq o TT*f) (v))
= (8,T(fomgoT*f)(v))
= (8, Tms(v))

because forgoT*f = ng.

Idea for the converse. Assume that ¢*©g = Og, i.e.,

(p(B), T(mgop)(w)) = (B,Trg(v)), VB €T*S, veTg(TS)



Since ¢ is a diffeomorphism, the range of Tg(mg o )
iS TWQ(SO(B))Q' so letting 8 = 0 = ¢(0) = 0. Argue
similarly for ¢»~1 and conclude that ¢ restricted to the
zero section S of T*S is a diffeomorphism onto the zero
section Q of T*Q. Define f := ¢~ 1|Q. Now one shows
that ¢ is fiber preserving, i.e., forg =mgop 1. Thisis
the main technical point. Then, using this, one shows
that o = T*f. N

Classical coordinate proof of the first part. Write

(s',..n8™) = flg .., q"™)



Since f : Q — S is diffeomorphism, we can solve ¢* =
q"(sl,..., s™). Coordinates on T*Q are (¢,....q", p1,...,0n)
and on T*S they are (si,...,s" r1,...,rn). So, both ¢
and p; are functions of (s!,...,s",r1,...,m). The map

T™ f is given by

1
T*f(Sl,...,Sn,’I"]_,...,’T’n> — (q 7°°°7qn7p17°°°7pn)°

But then, locally,

Os’ . o x
aqkqu = ppdd” (= (T*f)*O¢)

(©g =)rids’ =



Let (S,{-,-}°) and (M,{:,-}) be two Poisson mani-
folds such that S C M and the inclusion ig : S — M
is an immersion. (S,{-,-}°) is a Poisson submanifold
of (M, {-,-}M) if ig is a canonical map.

An immersed submanifold ) of M is called a quasi Pois-
son submanifold of (M, {-,-YM) if for any ¢ € Q, any
open neighborhood U of ¢ in M, and any f € C3(U) we
have

X(ig(q)) € Tyig(T4Q),
where i : Q — M is the inclusion and X is the Hamilto-

nian vector field of f on U with respect to the restricted
Poisson bracket {-, -},



e On a quasi Poisson submanifold there is a unique Pois-

son structure that makes it into a Poisson submanifold.

e Any Poisson submanifold is quasi Poisson.



T he converse is not true!

Counterexample. Let (M = R2, B) where

and (Q = R? wcan). The identity map id : Q —» M
IS obviously not a Poisson diffeomorphism because one
structure has leaves and the other is non-degenerate.
But is is also clear that any Hamiltonian vector field
relative to B is tangent to Q@ = R? and hence (Q,wcan)

iS a quasi-Poisson submanifold of (M, B).



Given two symplectic manifolds (M,w) and (S,wg) such
that S C¢ M and the inclusion 7 : S < M is an immersion,
the manifold (S,wg) is a symplectic submanifold of

(M,w) when i is a symplectic map.

Symplectic submanifolds of a symplectic manifold (M, w)
are in general neither Poisson nor quasi Poisson mani-

folds of M.

The only quasi Poisson submanifolds of a symplectic
manifold are its open sets which are, in fact, Poisson

submanifolds.



Symplectic Foliation Theorem. Let (M,{:-}) be a
Poisson manifold and D the associated characteristic
distribution. D is a smooth and integrable generalized
distribution and its maximal integral leaves form a gener-
alized foliation decomposing M into initial submanifolds
L, each of which is symplectic with the unique sym-
plectic form that makes the inclusion ¢ : £ — M into

a Poisson map, that is, £ is a Poisson submanifold of

(Ma{a})



Example: Let g* with the Lie-Poisson structure. The
symplectic leaves of the Poisson manifolds (g%, {-,-}+)
coincide with the connected components of the orbits
of the elements in g* under the coadjoint action. In this
situation, the symplectic form for the leaves is given by
the Kostant—Kirillov—Souriau (KKS) or orbit sym-

plectic form

wg(u) (— adg v, —ady V) =+ (v, [£, n]).



e (M, {-,-}) Poisson manifold. G acts canonically on

M when
Py{f, b} = {®}f, Pyh)

for all g € G.

e Easy Poisson reduction: (M, {-,-}) Poisson manifold,
GG Lie group acting canonically, freely, and properly

on M. The orbit space M/G is a Poisson manifold

with bracket

{f, Y™/ G (x(m)) = {fom, gon}(m)



e Reduction of Hamiltonian dynamics: h € C®(M)C
reduces to h € C°(M/G) given by how = h such that

Xypom="1TmoXy

e \What about the symplectic leaves? This is where
symplectic reduction comes in.

e Lie-Poisson reduction: Left quotient (T*G)/G =

gt. The map is: [ag] — T7R4(cag). Direct proof.
Discuss later. Notice that the quotient is for a left
action and the map is given by right translation. Will

be proved later.



LIE GROUP ACTIONS

M a manifold and G a Lie group. A left action of G on
M is a smooth mapping ® : G x M — M such that

(i) ®(e, z) =z, for all z € M and

(ii) ©(g, ©(h, 2)) = ©(gh, z) for all g, h € G and z € M.

We will often write

g-z:=P(g, z) ;= DPy(z) = P*(g).



The triple (M, G, ®) is called a G-space or a G-manifold.

Examples of group actions

e Translation and conjugation. The left (right)
translation L, : G — G, (Rg) h — gh, induces a
left (right) action of G on itself.

e The inner automorphism AD, : G — G, given by
ADg = R 10 Ly defines a left action of G on itself

called conjugation.



e Adjoint and coadjoint action. The differential at
the identity of the conjugation mapping defines a lin-
ear left action of G on g called the adjoint repre-

sentation of G on g

If Ady : g* — g* is the dual of Adg, then the map

d: Gxgt — g*
(g, v) — Ad;_l v,

defines also a linear left action of G on g* called the

coadjoint representation of G on g*.



e Group representation. If the manifold M is a vector
space V and G acts linearly on V, thatis, &4 € GL(V)
for all g € G, where GL(V) denotes the group of all
linear automorphisms of V', then the action is said to
be a representation of G on V. For example, the
adjoint and coadjoint actions of G defined above are

representations.

e Tangent lift of a group action. $ induces a

natural action on the tangent bundle T'M of M by

g Um .=— Tmcbg(’l]m), g & G, Um € TmM



e Cotangent lift of a group action. Letd :GXxM —
M be a smooth Lie group action on the manifold M.
The map ® induces a natural action on the cotangent

bundle T*M of M by

g-am:=Tg,® —1(am)

9

where g € G and am € 15, M.



The infinitesimal generator &, € X(M) associated to

£ € g is the vector field on Mdefined by

d

Ep(m) 1= It 5 Pexp tg(m) = Ted™ - &

The infinitesimal generators are complete vector fields.
The flow of &, equals (t,m) — expt&-m. Moreover, the

map £ € g — &y € X(M) is a Lie algebra antihomo-
morphism, that is,

(i) (a& + bn)prr = a&pr + by,

(i) [& 0l = =&l



If the action is on the right, then £ e g — &)y € X(M) is

a Lie algebra homomorphism.

Let g be a Lie algebra and M a smooth manifold. A
(left) right Lie algebra action of g on M is a Lie
algebra (anti)homomorphism &€ € g+—— &3y € X(M) such
that the mapping (m,§) € M x g — &y (m) € TM is

smooth.

Given a Lie group action, we will refer to the Lie alge-
bra action induced by its infinitesimal generators as the

associated Lie algebra action.



Stabilizers and orbits. The isotropy subgroup or sta-
bilizer of an element m in the manifold M acted upon

by the Lie group G is the closed (hence Lie) subgroup
Gm :={g € G | dg(m) =m} C G
whose Lie algebra g, equals

gm = {£ € g|&pm(m) = 0}

The orbit O,, of the element m € M under the group

action & is the set

Om =G -m:={Py(m)|g € G}.



The isotropy subgroups of the elements in a group orbit

are related by the expression
Ggm = gGmg_l for all g € G.

The notion of orbit allows the introduction of an equiv-
alence relation in the manifold M, namely, two elements
x,y € M are equivalent if and only if they are in the
same G—orbit, that is, if there exists an element g € G
such that ®4(x) = y. The space of classes with respect
to this equivalence relation is usually referred to as the
space of orbits and, depending on the context, it is
denoted by the symbol M/G.



e Transitive action: only one orbit, that is, O, = M
e Free action: Gy, = {e} for all me M

e Proper action: if ®: G x M — M x M defined by

®(g,2) 1= (2,P(g,2))

IS proper. This is equivalent to: for any two conver-
gent sequences {mn} and {gn - mn} in M, there exists a
convergent subsequence {gn,} in G.

Examples of proper actions: compact group actions,
SE(n) acting on R"™, Lie groups acting on themselves
by translation.



Fundamental facts about proper Lie group actions
o :GXx M — M be a proper action of the Lie group G
on the manifold M. Then:

(i) The isotropy subgroups G,, are compact.

(ii) The orbit space M/G is a Hausdorff topological space
(even when G is not Hausdorff).

(iii) If the action is free, M /G is a smooth manifold, and
the canonical projection w : M — M /G defines on M
the structure of a smooth left principal G—bundle.



(iv) If all the isotropy subgroups of the elements of M
under the G—action are conjugate to a given one H
then M/G is a smooth manifold and = : M — M/G
defines the structure of a smooth locally trivial fiber
bundle with structure group N(H)/H and fiber G/H.

(v) If the manifold M is paracompact then there exists a

G-invariant Riemannian metric on it.

(vi) If the manifold M is paracompact then smooth G-

invariant functions separate the G-orbits.



Twisted product. Let G be a Lie group and H C G
a subgroup. Suppose that H acts on the left on the
manifold A. The right twisted action of H on the
product G x A is defined by

(g, a) - h = (gh, L. a).

T his action is free and proper by the freeness and proper-
ness of the action on the G—factor. The twisted prod-
uct G xg A is defined as the orbit space (G x A)/H

corresponding to the twisted action.



Tube. Let M be a manifold and G a Lie group acting
properly on M. Let m € M and denote H := G,,. A tube

around the orbit G-m is a G-equivariant diffeomorphism
o.GxgA—U,

where U is a G-invariant neighborhood of G-m and A is

some manifold on which H acts.



Slice Theorem. G a Lie group acting properly on M

at the point me M, H := G,,. There exists a tube
p.:GxgB—U

about G-m. B is an open H-invariant neighborhood of
O in a vector space which is H-equivariantly isomorphic

to T M /T (G -m), where the H-representation is given
by

h-(v+Tm(G-m))  =TyndPy, v+ Thn(G-m).

Slice: S:=¢(le,B]) sothat U =G - S.



Dynamical consequences. X € X(U)%, U c M open

G-invariant, S slice at m € U. Then there exists

e X1 € X(G-5)C, Xp(2) = £(2)(2) for z € G-S, where ¢ :
G-S — g is smooth G-equivariant and £(z) € Lie(N(G>»))
for all z € G-S. The flow Ty of X is given by Ti(z) =

expté(z) -z, so Xp is complete.
o Xy € X(8)Cm

o If 2z=g¢g-5, for ge G and s & §, then

X(2) = Xp(2) + Ts®y (Xn(s)) = TsPg (X7(s) + Xn(s))



o If NV} is the flow of X (on S) then the integral curve
of X € Xx(U)E through g-se€ G- S is

Fy(g-s) = g(t) - Ni(s),

where ¢g(t) € G is the solution of

() = TeLyn (E(Ni(s))),  g(0) = g.

This is the tangential-normal decomposition of a G-
invariant vector field (or Krupa decomposition in bi-

furcation theory).



Geometric consequences. Orbit type, fixed point,

and isotropy type spaces

M(H) = {Z e M| G, €E (H)},

are submanifolds.
My is open in M

m &€ M is regular if JU > m such that dimQ, =
dimOy,,Vz € U.



Principal Orbit Theorem: M connected. The subset
MT"®9 is connected, open, and dense in M. M /G contains
only one principal orbit type, which is a connected open

and dense subset of it.

The Stratification Theorem: Let M be a smooth
manifold and G a Lie group acting properly on it. The
connected components of the orbit type manifolds M g
and their projections onto orbit space M(H)/G constitute
a Whitney stratification of M and M/G, respectively.
This stratification of M /G is minimal among all Whit-
ney stratifications of M/G.



G-Codostribution Theorem: Let G be a Lie group
acting properly on the smooth manifold M and m € M

a point with isotropy subgroup H := G,,. Then

(Tin(G-m))°) " = {df(m) | f € C=(M)T}.



SIMPLE EXAMPLES
e S1 acting on R?

Since S is Abelian we do not distinguish between orbit
types and isotropy types, that is, R%H) = R%{ for any

isotropy group H of this action.

If x = 0 then S} = 1 and S!.x is the circle centered
at the origin of radius ||x||. The slice is the ray through
0 and x. (R2)"9 = R?\ {0}, which is open, connected,

dense. R? = (R?)™%9 and (R?)"%9/S1 =]0, ool.



If x =0, then S§ = S!. The slice is R?. R = {0} and
Rg/St = {0}.

Finally R2/S1 = [0, ool.
e SO(3) acting on R3

Since SO(3) is non-Abelian, there is a distinction be-

tween orbit and isotropy types.

Since every rotation has an axis, if x &= 0 the isotropy
subgroup SO(3)x = S1(x), the circle representing the
rotations with axis x. So (R3)7¢ = R3\ {0}.



The orbit SO(3) - x is the sphere centered at the origin
with radius ||x||. The slice at x is the ray connecting the

origin to x.

(R3)31(X) is the set of points in R3 which have the same
istropy group S1(x), so it is equal to the line through the
origin and x with the origin eliminated. It is disconnected
and not SO(3)-invariant.

(]R{3)(51(X)) is the set of points in R3 which have the
istropy group S1(x) conjugate to S!(x). But any two
rotations are conjugate, so (R3)(51(X)) = R3\ {0}, which



is again equal in this case to (R3)"¢. This is connected,
open, dense. (R3)(Sl(x))/50(3) =]0, oo|.

If x = 0, the slice is R3, SO(3)g = SO(3), (R®)spo(3) =
(R3)(SO(3)) = {O}, and (R3)(SO(3)) = {O}/ 50(3) — {O}

Finally R3/SO(3) = [0, ool.
e Semidirect products
V' vector space, G Lie group

o .G — GL(V) representation



o' g — gl(V) induced Lie algebra representation:

£ v =y () =o' (Qui= 5| olexpi)

t=0

S = GEV semidirect product: underlying manifold is

G x V, multiplication

(91,v1)(g92,v2) ‘= (9192,v1 + 0(g1)v2)

for g1,90 € G and vq,vo € V, identity element is (e, 0)
and (g,v) ' = (g7, —o(g ).

Note that V is a normal subgroup of S and that S/V = G.



Let g be the Lie algebra of G and let s ;= g®V be the
Lie algebra of S, it is the semidirect product of g with
V using the representation ¢’ and its underlying vector

space is g x V. The Lie bracket on s is given by

[(€1,v1), (€2, v2)] = ([€1, 2], 0" (€1)vo — o' (€2)v1)

for £1,&> € g and vy,vp € V.

Identify s* with g* x V* by using the duality pairing on

each factor.



Adjoint action of S on s:

Ad(g,u) (57 U) — (Adg £7 O'(g)?] — U/(Adg g)“’) 9

for (g,u) € S, (&,v) € s.

Coadjoint action of S on s*:

Ad7, y-1(a) = (Ad? 1w+ (07) o(g)a, ox(9)a)
for (g,u) € S, (v,a) € s*, where
0x(g) 1= 0(g™ )" € GL(V™),

o, . g — V is the linear map given by ¢/, (¢) := ¢'(£)u and

(o!)* : V* — g* is its dual.



Clasification of orbits is a major problem!

Do the example of the coadjoint action of SE(3) =
SO(3)®R3. In this case:

o 1 SO(3) — GL(R3) is usual matrix multiplication on
vectors, that is, c(A)v := Av, for any A € SO(3) and
v € R3.

Dualizing we get ¢(A)*T = A*T = A-IT", for any T €
V* 2R3,



The induced Lie algebra representation ¢’ : R3 £ s0(3) —
gl(R3) is given by ¢/(Q)v =d/,Q =Q x v, for any Q,v €
R3.

Therefore, (o) T =v xT and ¢/(2)*T =T x £, for any
vEVER3 QeR3=50(3), and T € V* = R3.

We have ad}‘IH:H X )

So all formulas in this case become:

(A,a)(B,b) = (AB, Ab + a)

(A,a) 1= (A1 —A1a)



[(Xa Y)a (Xlay/)] — (X X X/7X X y/ o X/ X Y)
Ad(A a) (x,y) = (Ax,Ay — Ax x a)

Ad?A,a)—l(u’V) = (Au+ax Av,Av)

Let {eq1,e5,e3,f1,f>, f3} be an orthonormal basis of s¢(3) =
R3 xR3 such that e; = f; for i = 1,2,3. The dual basis of
s¢(3)* using the dot product is again {eq, e, e3, f1, 5, f3}.
Let e € {e1,ep,e3} and f € {f1,fy, f3} be arbitrary. What

are the coadjoint orbits?

SE(3)-(0,0) = (0,0). Since SE(3)(070) — SE(3) is not
compact, the coadjoint action is not proper.



The orbit through (e,0), e =0, is

SE(3) - (e,0) = { (Ae,0) | A € SO(3) } = Sffy x {0},

le]

the two-sphere of radius [le||.

The orbit through (0,f), f # 0, is

SE(3) - (0,f) = {(ax Af,Af) | A € SO(3),ac R3}
= {(u,Af) | A € SO(3), u L Af} = Tsﬁfﬂ,

the tangent bundle of the two-sphere of radius ||f||; note
that the vector part is the first component. We can
think of it also as T*Sﬁfn.



The orbit through (e,f), where e # 0,f # 0, equals
SE(3) - (e,f) = { (Ae+ax Af,Af) | A € SO(3), ac R3}.

To get a better description of this orbit, consider the

smooth map

e-f
1£1]2

¢ :(A,a) € SE(3) — (Ae + a x Af — Af, Af) € TSﬁf”,
which is right invariant under the isotropy group

SE(3)(e,f) Z{(B,b) | Be + b x f=e, Bf:f}

and induces hence a diffeomorphism ¢ : SE(3)/ SE(3>(e’f) —
2
Eoly.



The orbit through (e, f) is diffeomorphic to SE(3)/SE(3) (e )
by the diffeomorphism

(A, a) — Ad?A’a)_l(e, f)

Composing these two maps and identifying 7'S? and
T*S? by the natural Riemannian metric on S2, we get
the diffeomorphism & : SE(3) - (e, f) — T*Sﬁf” given by

e-f
€112

(A} 5 4y-1(e,f)) = (Ae +ax Af — — - Af, Af) .

Thus this orbit is also diffeomorphic to T*Sﬁfn.



e SE(3) acting on R3

This action is proper: (A,a)-u := Au-+a. It is not
a representation. The orbit through the origin is R3,
SE(3)g = SO(3).

This action is transitive: given u € R3 we have (I,0)-u =

u. So there is only one single orbit which is R3.



EXAMPLE

e Consider R® with the bracket

3 (3f dg B of 89)

[rg) =
t:9} 121 Ox;0y; 0Oy;0x;

e Sl-action given by
d: SlxrG — RO
(enga (Xa y)) — (Rgbxa RqSY)

e Hamiltonian of the spherical pendulum

1

h=§<y,y>+<fv,e3>



e Impose constraint (z,xz) = 1

e Angular momentum: J(x,y) = z1y> — zoy1.



Hilbert-Weyl Theorem: H — Aut(V) representation,
H compact Lie group. Then the algebra P(V) of H-
invariant polynomials on V is finitely generated, i.e.,
VP e PV 3k eN,nq,...,m. e PVH P e R[Xq,..., X}]
s.t. P= Po(my,...,7). Minimal set is a Hilbert basis.

Hilbert basis of the algebra of Sl-invariant polynomials
on R® is given by

$% -+ m%
L1Y2 — L2Y1.

x3 03 y% + y% + y% 05
Y3 04 T1Y1 + T2Y2 06

Semialgebraic relations

01
g2

O'AQL + 0% = o5(03 — U%); o3 > 0, os > 0.



Hilbert map m:v € V = (r1(v),...,7,(v)) € R separates
H-orbits. So V/H = range(mr).

Schwarz Theorem: The map f € C®°(RF) — fo(mq,...m%)
e C>®(V)H is surjective.

Mather Theorem: The quotient presheaf of smooth
functions on V/H is isomorphic to the presheaf of Whit-
ney smooth functions on 7 (V) induced by the sheaf of

smooth functions on RF¥.

Tarski-Seidenberg Theorem: Since 7 is a polynomial

map, range(w) C R* is semi-algebraic.



T heorem: Every semi-algebraic set admits a canoni-
cal Whitney stratification into a finite number of semi-

algebraic subsets.

Bierstone Theorem: This canonical stratification of
w (V') coincides with the stratification of V/H into orbit

type manifolds.

These theorems can be used to explicitly describe quo-
tient spaces of representations as semi-algebraic subsets

of a (high dimensional) Euclidean space.

Return to our concrete case of the spherical pendulum.



The Hilbert map is given by

c: TR3 —s RS
(Xa Y> — (01(X7 Y)v"'706(X7 Y))

The Sl-orbit space TR3/S1 can be identified with the

semialgebraic variety o(TR3) C R®, defined by these re-

lations.

TS2 is a submanifold of R® given by
TS ={(x,y) €R®| (x,x) =1, (x,y) =0}.

TS? is Sl-invariant.



TS2/S1 can be thought of the semialgebraic variety o(7'52)

defined by the previous relations and

g5

0'1—

1

o4

o100 = 0,

which allow us to solve for o4 and os, yielding

752/5' = 0(T5?) = {(01, 09, 03, 06) € R |
0505 + 08 = (1 — 03) (03 — 03),

|01| <1l 032> O}.



T he Poisson bracket is

2701

{-, y15°/5 o1 02 03 |06
o1 0 1—-07| 205 0
o5 | —(1 —0%) 0 —20103 | O
03 —209 20103 O O
o6 0 0 0 0

The reduced Hamiltonian is

1
H:§03‘|‘01



If 4 # 0 then (T'S?),, :=J~1(u)/S! appears as the graph
of the smooth function

2 2
o5 +
=2 o<1
1

The case u = 0 is singular and (7'5%)q := J~1(0)/S! is

not a smooth manifold.



ABSTRACT SYMMETRY REDUCTION

The case of general vector fields

M manifold
G X M — M smooth proper Lie group action
X € ¥(M)%, G-equivariant vector field

F; flow of X € ¥(M)C

Law of conservation of isotropy:



Mg ={m e M | Gy, = H}, the H-isotropy type sub-

Mmanifold, is preserved by F;.

My is, in general, not closed in M.

Properness of the action implies:

o (G, IS compact

e the (connected components of) My are embedded

submanifolds of M



N(H)/H (where N(H) denotes the normalizer of H in
(G) acts freely and properly on My.

g P My — MH/(N(H)/H) projection

vy - Mg — M inclusion

X induces a unique H-isotropy type reduced vector
field X on My/(N(H)/H) by

XHOﬂ'H:TT{'HOXOiH,



whose flow F! is given by

FtHowH:WHoFtoiH.

If G is compact and the action is linear, then the con-
struction of My /(N(H)/H) can be implemented in a
very explicit and convenient manner by using the in-
variant polynomials of the action and the theorems of
Hilbert and Schwarz-Mather.



T he Hamiltonian case

(M,w) Poisson manifold, G connected Lie group with

Lie algebra g, G x M — M free proper symplectic action

J: M — g* momentum map if Xy = &y, where J¢ :=

(J,€) and &,y is the infinitesimal generator given by £ € g

J: M — g* (infinitesimally) equivariant if J(g-m) =
Ad? 1 J(m), Vg € G (Tnd (Ep(m)) = —adfJ(m) <
Jlénl — {J€7J77} )



Proof Take the derivative on M of the defining relation
JS = (J,¢). Get: dIS(m)(vm) = (Tind (vm), ). Hence

{38,31} (m) = X |3¢| (m) = dI*(m) (Xgn(m))
On the other hand,

I (m) = (I(m), [€,1]) = — (I(m), ady &)



Noether’s Theorem: The fibers of J are preserved by
the Hamiltonian flows associated to G-invariant Hamil-
tonians. Equivalently, J is conserved along the flow of

any G-invariant Hamiltonian.

Proof Let h € C*°(M) be G-invariant, so ho ®4 = h for
any g € G. Take the derivative of this relation at g = €
and get £¢, h = 0. But ¢y = Xjc so we get {Jé h} =
(dh, Xy¢) = £¢,,h = 0, which shows that J5 € C°°(M)
is constant on the flow of X; for any & € g, that is J is

conserved. [



Example: lifted actions on cotangent bundles. ¢ :
G x Q — @ Lie group action, g-q := ®(g,q). Its lift to
the cotangent bundle T*Q is

W admits the following equivariant momentum map:

<J(Oéq>7 €> — <O‘Q7 gQ(Q)>7 \V/Oéq S T*Qa \vxg S g

Very important so we will give two complete proofs.



Proof 1 Recall that the cotangent lift of a diffeomor-
phism preserves the canonical one-form © on T*(). Hence

Wi e© = ©. Take | of this:

0= £¢,,0 =g, ,dO+dig, ,© = —ig, ,Q d(©,&r+q)

which shows that a momentum map exists and is equal
to J¢ = (©,&r+g). However, Vo, € T*Q, we have

Jg(aq) — <@(aq)a§T*Q(aq>> — <aq7Taq7TQ (fT*Q(aq)>>-

But

d
To,™Q (fT*Q(Oéq)) = To,mQ <dt‘t=0 Wexp tf(o‘q)>

d d

= at =0 (WQ © Wexp tg) (aq) = i =0 (Cbexp tg © WQ) ()

= {p(q),




which proves the formula.

We prove G-equivariance. Let g€ G, £ €g, ag € T*Q.

(J(g- ), &) = (g aq,€g(g- )
— (g, (Tpq®3 060 0 Dg) (@) = <ozq, (Ad, 1€),, (q)>
= (J(ag), Ady-1€) = (Ad? 1 J(ag),€). n

Proof 2 Define the momentum function of X € X(Q)

P:X(Q) —» C(T*Q) by P(X)(ag) := {ag, X(q))

for any aq € T;Q. In coordinates P(q',p;) = X7 (p;)p;-



L(T*Q) is the space of smooth functions linear on
the fibers. In coordinates F € £(T*Q) < F(¢', p;) =
X7 (¢q")p; for some functions X7. If H(g",p;) = Y’ (¢")p;,

OF0OH OHOF

FHY¢ ' p)=——" _~"~
{F,H}(q", p;) 9aiOp;  0q) Op,

_OX L Y
o0X? . Y -

so L(T*Q) is a Lie subalgebra of C®(T*Q).



Momentum Commutator Lemma: The Lie algebras
(i) (X(Q),[-,-]) of vector fields on @

(ii) Hamiltonian vector fields Xy on T*Q with F € L(T*Q)
are isomorphic. Each of these Lie algebras is anti-

isomorphic to (L(T*Q),{-,-}). In particular, we have

Proof P : X(Q) — L(T*Q) is linear and satisfies the

relation above because

(X, Y] = 0"y  OX°

. Y
0q7 0qJ

implies



oxt _ . 9Yy' .
5 Y — .pz'Xj> pi = {P(X),P(Y)}
q OqJ

—P(X,Y]) = (

as we saw above. So, P is a Lie algebra anti-homomorphism.

P(X) = 0 <= P(X)(aq) = (g, X(q)),Vag € T*Q <—
X(q) =0,Vq € Q, so P is injective.
For each F € L(T*Q), define X(F) € X(Q) by

(ag, X(F)(@)) = Flag).

Then P(X(F)) = F, so P is also surjective.



We know that F'— X is a Lie algebra anti-homomorphism
(by the Jacobi identity for {-,-}) from (L(T*Q),{:,-}) to
{Xp | Fel(T*Q)},[-,:]). This map is surjective by def-
inition. Moreover, if Xp = 0 then F' is constant on T*(Q,

hence equal to zero becuase F' is linear on the fibers. [

If X € X(Q) has flow ¢, then the flow of Xp(yy on T7Q
is T*p—¢. Call X' := Xp(x) the cotangent lift of X.

Proof ng : TQ — Q cotangent bundle projection. Dif-
ferentiate mgo T p_y = promg at £ = 0 and get

d
TrgoY = Xomg, where Y(aq):= iR T*p_t(aq)



So, T"p_4 is the flow of Y, by construction. Since T*p_4
preserves the canonical one-form © € QI(T*Q), it fol-
lows that £y © = 0, hence

in — —iyd@ — dlye — £Y@ — dlye
By definition of ©, we have
iY@(aq) — <@(aq),Y(aq)> — <04anozq7TQ(Y(Oéq))>
= (ag, X(q)) = P(X)(g) <— iy© = P(X),

Note:

Xpx)y Xp) = —Xipx),p()y = —X_pxy]) = Xp(x,v)



g acts on the left on @, so it acts on T*(Q by gT*Q =
XP(gQ)- This g-action on T7(Q is Hamiltonian with in-
finitesimally equivariant momentum map J : P — g¢*

given by

(J(g), &) = (aq,€o(q)) = P(&g) (aq)

If G, with Lie algebra g, acts on Q and hence on T*(Q by

cotangent lift, then J is equivariant.

In coordinates, £5(¢7) = £%AL(¢?) = Ja&® = pi&h =
p ALED, e,

Ja(q?,p;) = piAL(¢?)



Proof For Lie group actions, the theorem follows di-
rectly from the previous one, because the infinitesimal
generator is given by gT*Q — XP(€Q>, so the momentum

map exists and is given by J& = P(&g) for all £ € g.

For Lie algebra actions we need to check first that the

cotangent lift gives a canonical action. So, for &,n € g,

gT*Q[{Fa H}] — XP(gQ) [{F7 H}]
— {Xp(gQ)[F], H} + {F Xp(gQ)[H]}
= {&mglF], H} + {F, &+l H]}

Donel



Remember that the momentum map J : T*Q — g* is

given by J¢ = P(¢g) for any € € g.

Recall the formula [, n]g = —[£g,ngl. Then

Jlénl — P&, nlg) = —P([g.ngl) = {P(&g), P(ng)}
).

so J is infinitesimally equivariant.

Now assume that G has Lie algebra g and that G acts
on  and hence on T*@ by cotangent lift. Remember:

—_ S



We prove G-equivariance. Let g€ G, £ €g, ag € T*Q.

(J(g-aq),8) =(g9-2q,¢0(9-q))
= <aq, (Tg.qcbg_l 0 §p o Cbg) (q)>
= <04qa (Adg—l S)Q (Q)>
= <J(aq), Ad, 1 §>
= <Ad;_1 J(aq),§>. u

If J: M — g* is an infinitesimally equivariant momentum
map for a left Hamiltonian action of g on a Poisson

manifold M, then J is a Poisson map:

J{Fy, Foly = {J"F1,J°Fo}, VF1,Fp € C°(g").



Proof Infinitesimal equivariance < {J¢, J7 = Jl&nl, Let
me M, £ =06F1/6u, n =0F>/6p, p:=J(m) € g*. Then

J{F, R} (m) = <u, Bil, 551;2]> = (u, [&, 1))

= JI&M(m) = {J5, 31 (m).

But for any me M an vy € T\, M, we have

d(Fy o J)(m)(vm) = dF1(u) (Tmd (vm))

— <TmJ(vm), 5;;1> — dJE(m) (vm)

i.e., F;0J and J¢ have equal m-derivatives. The Poisson

bracket depends only on the point values of the first

derivatives and hence



{F10J,Fr0J}(m) = {J’S,J”}(m). O]

Special case: M = T*G, G-action on T*G is the lift of
left translation. We get: {Fy,F}yodJy, ={F1o0Jp,F>o0
Jr}. Restrict this relation to g* and get {Fy, Fo}y(pn) =
{Fr0Jdr,Food; (). But (F;oJdp)(ag) = F;(TFRgag) =:
(F;)r(ag), where (F;)p : T*G — g* is the right invariant

extension of F; to T*G. So we get

{F1, Foyy (u) = {(F1)Rr, (F2)r}(u).



Identifying the set of functions on g* with the set of
right(left)-invariant functions on T*G endows g* with the

+Lie-Poisson structure.

This is an a posteriori proof, i.e., one needs to already

know the formula for the Lie-Poisson bracket.

Example: linear momentum. Take the phase space
of the N—particle system, that is, T*R3¥. The additive
group R3 acts on it by

v-(q;, ) = (q;+v, p) = &rala) = (a1, an: & .-, 8).



J: T*R3V — Lie(R3) ~R3
(q;, pY) — TN, p
which is the classical linear momentum.

Indeed, by the general formula ofcotangent lifted ac-
tions, we have

. N
(J(q;,p"), &) = .;1 p'-&.

Example: angular momentum. Let SO(3) act on R3
and then, by lift, on T*R3, that is, A- (q,p) = (Aq, Ap).
J: T*R3 — s0(3)* ~R3
(¢,p) —  gXxp.

which is the classical angular momentum.



Let's do it using the formula for cotangent lifted actions.
If £ eR3, év:=¢ x v, for any v € R3, € € s0(3), then

d = N
Epa(v) = o v =8v==¢xv

so that
(J(a,p), &) =p-&p3(@) =p- (£ xq)=(gxp)-§

which shows that

J(q,p) =qxp



Example: Momentum map of the cotangent lifted
left and right translations. Let G act on itself on the
left: Ly(h) := gh. The infinitesimal generator of £ € g is

I d d

§G(h) = — t Lexpt{(h) — N =0 Rp(exptf) = TeRp¢

The infinitesimal generator of left translation is given by

the tangent map of right translation: §é(h) = TeR}E.

The momentum map of the cotangent lift of left trans-

lation J; : T*G — g* is hence given by

<JL(Oég)af> — <Oégaf(L;(9)> — <Oég7TeRg§> — (T:Rgozg,@



For the cotangent lift of right translation, ¢5(g) = TeL4é¢

Example: symplectic linear actions. Let (V, w) be a
symplectic linear space and let G be a subgroup of the
linear symplectic group, acting naturally on V.

(B, & = Jw(Ev (@), ).

This J is not that of a cotangent lifted action.

Example: Cayley-Klein parameters and the Hopf
fibration. Consider the natural action of SU(2) on C=2.
The symplectic form on C2 is minus the imaginary part
of the Hermitian inner product.



Since this action is by isometries of the Hermitian met-
ric, it is automatically symplectic and therefore has a
momentum map J : C2 — su(2)* given, as above, by

(J(z,w), &) = 1cu (f(z w)T (z,w) ) z,we C, £ €su(2).
The Lie algebra su(2) of SU(2) consists of 2 x 2 skew
Hermitian matrices of trace zero. This Lie algebra is

isomorphic to so(3) and therefore to (R3, x) by the iso-

morphism given by

x = (z1,22,23) e R3 —
N 1 — i3 izl — 22
X = — , . su(22).
o> | —ggl —|—ac'2 S € 5u(2)



Thus we have
X,y] = (xxy), Vx,ycR>.

Other useful formulas are

1
det(2x) = [|x||* and trace(xy) = —_xy.

Identify su(2)* with R3 by the map u € su(2)* — i € R3
defined by
peX = _2<:LL75€>

for any x € R3.

The symplectic form on C? is given by minus the imag-
inary part of the Hermitian inner product.



With these notations, the momentum map J : C2 » R3
can be explicitly computed in coordinates: for any x € R3

we have
B EIm _ix3 _ixl — 22 z | |z
9 il -+ 2 i3 W W
1
= —5(2 Re(wz), 2Im(wz), |z|° — |w|?) - x.
T herefore

- 1
J(z,w) = —5(2102, 2|% — |w|?) € R3.



J is a Poisson map from C2, endowed with the canoni-
cal symplectic structure, to R3, endowed with the + Lie
Poisson structure. Therefore, —J : C2 — R3 is a canon-
ical map, if R3 has the — Lie-Poisson bracket relative
to which the free rigid body equations are Hamiltonian.

Pulling back the Hamiltonian

1 N+ M- M
H(ID) = —11 - 1711, i .=t 2 13
2 I I, I3

to C2 gives a Hamiltonian function (called collective) on
C2. 1 = diag(Iy, I, I3) is the moment of inertia tensor

written in a principal axis body frame of the free rigid
body.



The classical Hamilton equations for this function are

therefore projected by —J to the rigid body equations
IT =TI x I L11.

In this context, the variables (z,w) are called the Cayley-
Klein parameters. They represent a first attempt to
understand the rigid body equations as a Hamiltonian
system, before the introduction of Poisson manifolds.
In quantum mechanics, the same variables are called
the Kustaanheimo-Stiefel coordinates. A similar con-
struction was carried out in fluid dynamics making the
Euler equations a Hamiltonian system relative to the so-

called Clebsch variables.



Now notice that if
(z,w) € §3 = {(z w) € C? | |2]? + |w|? = }7

then || -J(z,w)| = 1/2, so that —J|¢3: S® — 51/2' where
1/2 is the sphere in R3 of radius 1/2.

It is also easy to see that —j|S3 IS surjective and that
its fibers are circles. Indeed, given (z1,22, 23) = (21 +

ix?,x3) = (re'¥,z3) € 51/2, the inverse image of this
point is

— j_l(rew, x3) =

|1 11
{ (eZOJ 5 + z3, ew\l 5 5133) cS3le

i(0—p+v) — 1}.



One recognizes now that —J|gs : S3 — Sf/z is the Hopf

fibration. In other words:

the momentum map of the SU(2)-action on C2, the
Cayley-Klein parameters, the Kustaanheimo-Stiefel co-
ordinates, and the family of Hopf fibrations on concentric

three-spheres in C?2 are the same map.



o If £ € g, denote by &7, € X(G) the left invariant vector
field whose value at e is &, i.e., {1,(g) = TeLg(€), Vg € G.

€.l = [€,n]L

by definition of the Lie bracket on g.

e Left trivialize T*G:

ANTG 3 ag — (g,T;Lgozg) = (9,Jp(ayg)) € G x g*



A IS an equivariant diffeomorphism relative to the lift of
left translation on T*G and the left G-action on G x g*
given by g - (h,u) = (gh,un). Therefore, (T*G)/G =
(G xg*)/G =g*" and hence Ji : T*G — g* is the compo-
sition of this diffeomorphism with the canonical projec-
tion T*G — (T*G)/G. Consequently, g* inherits a Pois-
son structure, which we call, for the time being {-,-}_,

uniquely characterized by
{F1,F} _oJp={F10Jg,FoolJg}, VF1,Fye C™(g").

GOAL: Compute this bracket.



To do this, it is enough to work with linear functions
F1, F> because the Poisson bracket depends only on the
values of the differentials of the functions at each point.
If F; is linear, then F;(u) = < %F> for some constant
element 5 e g. If p: =T Lyaq € g*, we get

OF; OF;
(F)r(ag) = F; (T¢ Lyag) = <T*LQO‘97 5M> N <O‘9»TeLg—z>

() @)= () Y

Thus, we get



(=17 (52 )7 ((%2) )
O L KL
_ (][R (oF2
- P(_<5“>L7(5“’>L)(M>

6F, 0F5 )
(_ Opp Opt | g

< 0F7 o0F> >
— — M ) : _
o~ O

T his theorem and general considerations implies the fol-

lowing.



Assume that H € C°(T*G) is left(right)-invariant. Then
H¥ := H|g* satisfy H=H oJpand H= HtoJ;. The
flow F; on T*G and the flow F;~ of X = on g+ are related
by
JROFt:Ft_OJR, JLOFt:Ft_I_OJL.
Remember that J; is conserved.

If a(t) € T, G is an integral curve of Xy in T*G, let
w(t) :=Jp(a(t)), v(t) :=Jr(a(t)) = v = const. Then

v = Ad;(t)_l w(t).



Differentiate in t the previous relation:
0 = Ad”* —ad* (t) + d—“
— Mgt g9ty ¥ dt

However, u(t) satisfies the Lie-Poisson equations

dpt _ * * —
o7 = asH- sk = A4 py15t) om0 = O

A sufficient condition for this to hold is g(t)~1g(t) =

OH™ /ou. So, the integral curve of the unreduced system

on T*(G is found by solving:



dg(t) OH

o = h O g = Telow 5, O

and putting

Oé(t) — Tg*(t)Lg(t)_llu(t)

The expression of the push forward M\« Xy € X(G x g) is

()\*XH)(Q, ,LL) — (TeLg,UJ7 M adj;g{— :u’) S TQG X T,ug*
,u

lLLong direct proof.



More precise properties of the momentum map

e Freeness of the action is equivalent to the regularity

of the momentum map: rangeT,,J = (gm)°.

Proof: We have TimM = {X¢(m) | f € C*(U)}, U

open neighborhood of m. For any £ € g we have

(Tmd (X (m)), &) = dIS(m) (X (m)) = {I, £}(m)
= —df(m) (Xz¢e(m)) = —df(m) (Ear(m)).



So

§ € gm = E{y(m) =0 <=

df(m) (Ep(m)) =0,Vf € C(U) <~
(TimJ (X(m)), &) =0,Vf € C®(U) —
£ e (rangeTy,J)° O

o kerTy,d = (g-m)¥.
Proof. vy, € kerT),J if and only if for all £ € g

0 = (Tnd (vm), &) = dI*(m) (vm) = w(m) (Xye(m), vm)
= w(m) (Epr(m), vm)

< vm € (g-m)“ O]



e EXxistence: The obstruction is the vanishing of the

map
p: g/[gag] — Hl(M7R)
€] — [ig,,w]

e Equivariance: When is (g, [-,:]) = (C*°(M),{-,-}) de-
fined by & — J¢, & € g, a Lie algebra homomorphism,
that is,

Jl&n = 38 31y ¢ neq

Answer: if and only if

T.J (63()) = — ad{ 3 (),



A momentum map that satisfies this relation in called

infinitesimally equivariant.

Among all possible choices of momentum maps for
a given action, there is at most one infinitesimally

equivariant one.



Sufficient conditions: Assume H!(g;R) = H?(g;R) =
0. By the Whitehead lemmas, this is the case if g

IS semisimple.

e J is G-equivariant when

Ad;_l OJ — J @) Cbg
e If G is compact J can be chosen (G-equivariant

e If G is connected then infinitesimal equivariance is

equivalent to equivariance.



Define the non-equivariance one-cocycle, or the the

Souriau cocycle, associated to J is the map

o. G — g*

g > J(Pg(2)) —Ad _1(J(2)).

Supposse that M is connected. Then:

(i) The definition of o does not depend on the choice

of ze€ M. M connected is a crucial hypothesis.

(if) The mapping o is a g*-valued one-cocycle on G with

respect to the coadjoint representation of G on g*.



Define the affine action of G on g* with cocycle o by

=: Gxg*t — g*

(g, ) — Adl 1 p+ a(g).

= determines a left action of G on g*. The momen-
tum map J : M — g* is equivariant with respect to the

symplectic action ® on M and the affine action = on g*.

‘The affine orbits O,, are also symplectic with G-invariant

symplectic structure given by

wg, () (g (), mg (1)) = (v, [, 7)) F (&, 1),



where the infinitesimal non-equivariance two-cocycle
> € Z2(g,R) is given by

2. gXxXg — R
(& n) — (& n) = day(e) - &,

with &y : G — R defined by 6,(g9) = (c(g),n)-

Reduction Lemma:
93(m) ™M = g-mnkerTind =g-mn((g-m)~.

Proof: SM(TTL) cg-mnkeripmd < 0="1T,J (SM(m)) =
—ang(m)—FZ(f,-) @ngJ(m) []



J 1w

symplectically
orthogonal spaces

The geometry of the reduction lemma.



Momentum maps and isotropy type manifolds.
e mc M. Then Mg Iis a symplectic submanifold of M.

Proof: By the Tube Theorem for proper actions, Mg,
is an embedded submanifold and T;Mg,_ = T.MC&m =
(T-M)%m Yz € Mg, . To show that i*w is a symplectic
form, where 7 : Mg <— M, it suffices to show that

(i*w)(z) is nondegenerate on T, M , for all z € M.
Gm Gm

H compact Lie group and (V,w) symplectic representa-

tion space. Then VH is a symplectic subspace of V.



Let ((,) be a H-invariant inner product on V/, possible by
compactness of H (average some inner product). Define
T:V — V by (u,v)) = w(u,Tv) and note that it is a
H-equivariant isomorphism. Therefore, T(VH) ¢ VH,
Assume that v € VH satisfies w(u,v) = 0,Vv € V¥, But
then 0 = w(u, Tv) = (u,v),Yv € V. Put here v = u
and then the positive definiteness of ((,) implies that
u = 0. []



o Let My be the connected component of Mg, con-

taining m and
N(Gm)" :={n € N(Gm) |n-z¢€ Mg forall z¢c Mg }.

N(Gm)™ is a closed subgroup of N(Gy,) that contains
the connected component of the identity. So it is also
open and hence Lie(N(Gmn)™) = Lie(N(Gm)).

In addition, (N(Gm)/Gm)™ = N(Gm)™/Gm so that

Lie(N(Gm)™/Gm) = Lie (N(Gm)/Gm) .



o L' = N(Gmn)™/Gyn acts freely properly and canoni-
cally on Mglm by W(nGm,z) :=n-z.

Proof: The map WV is clearly well defined. It is easy to
see it is a left action. It is also obvious that it is free. It

is proper, because N(Gm)™ is closed. Still need to show

that it is canonical.

For any | = nGym € L™ we have

\U?(Z*w) = (’L O \Ul)*w e (Cbn O i)*w — i*(b;';w — i*w. []



e The free proper canonical action of L™ := N(Gm)™/Gm
on Mg has a momentum map Jym : M7 — (Lie(L™))*

given by
Jrm(z) = /\(J]Mgzm(z) —J(m)), =z¢€ M@”m.

In this expression A : (g°,)¢m — (Lie(L™))* denotes the

natural L™-equivariant isomorphism given by

(NGB, 5

(exp t€) Gm> = (8,6),
O

=

for any 3 € (g;’n)Gm, £ cLie(N(Gm)™) = Lie(N(Gm)).



e The non-equivariance one-cocycle 7 : M — (Lie(L™))*

of the momentum map J;m is given by the map

7)) = Nlo(n)+n-J(m) —J(m)).



CONVEXITY

J . M — g* coadjoint equivariant. G, M compact. The
intersection of the image of J with a Weyl chamber is a
compact and convex polytope. This polytope is referred
to as the momentum polytope.

Delzant’s theorem proves that the symplectic toric man-
ifolds are classified by their momentum polytopes. A
Delzant polytope in R" is a convex polytope that is
also:

(i) Simple: there are n edges meeting at each vertex.



(ii) Rational: the edges meeting at a vertex p are of
the form p4tu;, 0 <t <oo, u; € Z", i € {1,...,n}.

(iii) Smooth: the vectors {u1,...,un} can be chosen to

be an integral basis of Z".

Delzant’'s Theorem can be stated by saying that

{symplectic toric manifolds} — {Delzant polytopes}
(M,w, T J . M — R"™) ey J(M)

IS a bijection.



Marsden-Weinstein Reduction Theorem
e J: M — g* equivariant (not essential)
e ucJ(M) C g* regular value of J

e Gy -action on J=1(wn) is free and proper, where Gy =
{g € G|Adyu =}

then (M, := J~ () /Gp,wy) is symplectic:

sk
quZ’L

ps

iy 2 J71(u) = M inclusion,
mu s I () — I~ (w) /G, projection.



The flow F; of X, h € C®(M)C, leaves the connected
components of J=1(x) invariant and commutes with the

G-action, so it induces a flow F}' on M, by
WMoFtoiMZFtMOWM.

" is Hamiltonian on (M, w,) for the reduced Hamil-

tonian h, € C*°(M,) given by
hyomy = hoty,.

Moreover, if h,k € C*°(M)Y, then {h,k}u = {hu, ku}a,-



Proof: Since m, is a surjective submersion, if w, exists,

b

it IS uniquely determined by the condition T,

Wy = iZw.

This relation also defines w,, by:

wu(mp(2)) (Temp(v), Temp(w)) = w(z) (v, w),

for z€ J7 () and v,w € I 1 ().

To see that this is a good definition of wy, let
y = Py(z2), vl = T ®g(v), w' = Tzq’g(w)TzJ_l(N)a

where g € G,. If, in addition Ty.,7m,(v") = Ty mu(v') =
T.mu(v) and Ty mu(w”) = Ty mu(w') = Tomu(w), then
V' =0+ &g 2) € TI () and W’ = w' +np(g-2) €
T.J~1(u) for some &, € g, and hence



w(y) (", w") = wly) (W, w) (by the reduction lemma)
= w(Pg(2))(T2Py(v), T Pg(w))
= (Pyw)(2) (v, w)

= w(z)(v,w) (action is symplectic).

Thus wy, is well-defined. It is smooth since

smooth. Since dw = 0, we get
Wfbdwu = dw/jw” = di;’;w = i;dw = 0.

Since m, is a surjective submersion, we conclude that



To prove nondegeneracy of wy, suppose that
WM(WM(Z))(TZ’?TM(’U),Tzﬁu(w)) =0
for all w € T»(J~1(w)). This means that
w(z)(v,w) =0 forall weT(J (W),

i.e., that v € (T»(J~1(w))*¥ = T-(G- 2) by the Reduction

Lemma. Hence
v € T(I T (W) NTo(G - 2) = To(Gp - 2)

so that T,m,(v) = 0, thus proving nondegeneracy of wy,.



Let Y € X(M,) be the vector field whose flow is Ff.

Therefore, from 7, 0 F; 014, = Ff' om, it follows
Trnp,oX,=YoTr, on J 1(u).

Also, hy o m, = h oty implies that dhy o T'my, = dh on

J=1(w). Therefore, on J-1(u) we get
7'('; (iyw,u) — iXhT(';w,u — thZZw — Z’Z (1th) — ZZdh
=d(hoiy) =d(hyomy) = W;dh'u
— 7'('7; (iXth:“> y

SO iywy = 1x, wy since my, is a surjective submersion.
!

Hence Y = X, Dbecause w, Is nondegenerate.



Finally, for m € J71(u) we have

{hp byt ag, (ma(m)) = wu(m(m)) (X, (mu(m)), X, (7a(m)) )
= wyu(mu(m)) (T (Xp(m)), Trnmru (X (m)))
= (mwp) (m) (Xp(m), Xi(m))
= (iyw)(m) (Xp(m), Xj(m))
= w(m) (Xp(m), Xi(m))
= {h, k}(m)
= {h, k}u(ﬁu(m))a



Problems with the reduction procedure

e Momentum map inexistent

e How does one recover the conservation of isotropy?

e M, is not a smooth manifold

e (G is discrete so momentum map is zero

e N\ is not a symplectic but a Poisson manifold



Same set up as in the symplectic reduction theorem: M
connected, G acting symplectically, freely, and properly

on M with an equivariant momentum map J : M — g*.

The connected components of the point reduced spaces
M,, can be regarded as the symplectic leaves of the Pois-
son manifold (M/G,{-, -}M/G) in the following way. Form
a map [iy] : M, — M/G defined by selecting an equiv-
alence class [Z]GM c M, for z € J=1(u) and sending it
to the class [z]g € M/G. This map is checked to be

well-defined and smooth.



We then have the commutative diagram

I 1wy M
71-“ T
;

M,u [ ,LL] . M/G

One then checks that [i,] is a Poisson injective immer-
sion. Moreover, the [¢,]-images in M /G of the connected
components of the symplectic manifolds (M, £2,) are its

symplectic leaves. ASs sets,



[in] (M) =T (0Op) /G,

where O, C g* is the coadjoint orbit through p € g*.
. ~1

IS called the orbit reduced space associated to the
orbit O,. The smooth manifold structure (and hence

the topology) on Mg, Is the one that makes

into a diffeomorphism.



An injectively immersed submanifold of S of Q is called
an initial submanifold of @ if for any smooth manifold
P,amap g: P — S issmooth if andonly if tog: P — Q)

IS smooth, where ¢+ . § — (@ is the inclusion.
Most prop. of submanifolds hold for initial submanifolds.
Symplectic Orbit Reduction Theorem

e [ he momentum map J is transverse to the coadjoint
orbit O, and hence J=1(0,) is an initial submanifold of
M. Moreover, the projection mp, : J7+(Ou) = Mo, is a

surjective submersion.



° M@M IS a symplectic manifold with the symplectic form

2p,, uniquely characterized by the relation

7’
* B T — - 3k
WOMQOM — JOMCUOM —I- ZOMQ7

where Jp, is the restriction of J to J=1(0y) and ip), :

J-1(0,) < M is the inclusion.

e The map [iu] : My — Mp, is a symplectic diffeomor-

phism.

~

e Let h be a G-invariant function on M and define h :
M/G — R by h = how. Then the Hamiltonian vector field

Xy Is also G-invariant and hence induces a vector field



on M/G, which coincides with the Hamiltonian vector
field X5. Moreover, the flow of X5 leaves the symplectic
leaves My, of M/G invariant. This flow restricted to
the symplectic leaves is again Hamiltonian relative to
the symplectic form Q@M and the Hamiltonian function

ho, given by
hOM O W@M — ho iOM < hOM = E’OM'
o If h,k € C°(M)C, then

{h7 k}OM — {hOW kOM}MOM°

This is a theorem in the Poisson category.



COTANGENT BUNDLE REDUCTION

NOTATIONS AND DEFINITIONS

Given is a smooth free proper action @ : G x Q — @ and
then lift the action to T™*(Q; it preserves the one-form
and has an equivarant momentum map J : T*Q — g*

given by

(J(ag), &) = ayq (fQ(q)), for all £ e g.

A connection one-form A € Q1(Q;g) on the principal
bundle 7 : Q — @Q/G satisfies

o A(q) (¢g(q)) =¢ forall € g
e &r A = AdgoAd <= A(g-q)(gvqg) = Adg (A(q)(vg))



The horizontal bundle H :=ker A; TQQ = H® 'V, where

Vi = {0(q) | £ € g} is the vertical space at ¢ € Q.
We have T, ®4(Hy) = Hy.q for all g € G and g € Q. The

horizontal bundle characterizes the connection.

The curvature B = Curvy € Q2(Q; g) of A is defined by
B(q)(ug,vq) = dA(q) (Horqugq, Horqgvg), where Horgug is
the horizontal component of uq. The Cartan structure

equations state

B(X,Y)=dA(X,Y) — [A(X), A(Y)] for all X,Y € X(Q).



COTANGENT BUNDLE REDUCTION:.:
EMBEDDING VERSION

What is (T*Q), concretely?

Form the left principal Gy-bundle mg g, @ Q@ — Qu =
Q/Gu.- The momentum map JH :T%Q — gj, is

JH (o) = J(eg)lgy

Let u' := plg, € g;;- Notice that there is a natural inclu-
sion of submanifolds

I (w) C (I,



Since the actions are free and proper, p and u are regular
values, so these sets are indeed smooth manifolds. Note

that, by construction, u' is Gy-invariant.

There will be two key assumptions relevant to the em-

bedding version of cotangent bundle reduction. Namely,

CBR1l. In the above setting, assume there is

a Gy-invariant one-form oy on () with values in
(I~

and the stronger condition



CBR2. Assume that «;, in CBR1 takes values
in J71(w).

Then there is a unique two-form 3, on @, such that
Wa,GMﬁM = doy.

Since IS @ submersion, iIs closed (it need not
Q,Gu ¥

be exact). Let
By = 70, Bu € QX(T*Qu),

where mg , 1 T"Qu — Qpu is the cotangent bundle projec-
tion. Also, to avoid confusion with the canonical sym-
plectic form Q2can on T*(Q, we shall denote the canonical



symplectic form on T*Q,, the cotangent bundle of pu-

shape space, by wcan.

e If condition CBR1 holds, then there is a symplectic
embedding

Pu - ((T*Q),LM Qu) — (T*Qu,wcan — BM))

onto a submanifold of T%Q, covering the base Q/G.

e This map ¢, gives a symplectic diffeomorphism of
((T*Q)p, 21) onto (T Qu,wcan—By) if and only if g = g.



o If CBR2 holds, then the image of ¢, equals the vector
subbundle [TWQ,GM(V)]O of T*Qu, where V. C TQ is the
vector subbundle consisting of vectors tangent to the G-
orbits, that is, its fiber at ¢ € Q equals Vg = {{g(q) [ £ €
g}, and ° denotes the annihilator relative to the natural

duality pairing between T'Qy, and T*Qy.

e Assume that A € Q1(Q; g) is a connection on the prin-
cipal bundle g ¢ : @ = Q/G. Then au(q) := (1, A(q)) =
A(Q)*n € Q1(Q) satisfies CBR2. This implies that By,
is the pull back to T*Q, of day, € Q2(Q), which equals
the p-component of the two form B+ [A, A] € Q2(Q; g),

where B is the curvature of A.



COTANGENT BUNDLE REDUCTION:.:
BUNDLE VERSION

Again we will utilize a choice of connection A on the
shape space bundle g g : Q — Q/G. A Kkey step in the
argument is to utilize orbit reduction and the identifica-
tion (T*Q)u = (T*Q)p. Q/G is called the shape space.

The reduced space (T*Q), is a locally trivial fiber bundle
over T*(Q/G) with typical fiber O:

(T*Q)y 25 T*(Q/G)



GG also acts on a manifold V on the left. Then g-(q,v) 1=
(9-q,9-v) is a free proper action so form P xgV =
(P x xV)/G. This is a locally trivial fiber bundle over
Q/G all of whose fibers are diffeomorphic to V.

If V is a representation space of GG, then Q@ xgV — Q/G
is a vector bundle. In particular, if V is g or g* and the G-
action is the adjoint or coadjoint action, then g := Q Xag
is the adjoint bundle and its dual g* := Q xX& g* is the

coadjoint bundlile.



Unlike the connection form A, the curvature drops to
an adjoint bundle valued two-form B on the base Q/G,

namely,

B(m(q)) (Tym(uq), Tam(vq)) 1= [q, B(q)(uq, vq)] € §

PULL BACK COMMUTES WITH ASSOCIATING

o m . P — M left principal G-bundle. v : N — M surjec-

tive submersion. Define the pull back bundle over N
by
P:={(n,p) € N x P|n(p) =7(n)}.



=}
:1

N - M

T :P — Nand Ty p : P — P are the projections on
the first and second factors. P is a smooth manifold of
dimension dimP +dim N —dim M and the free G-action

on P induces a free G-action on P given by

g-(n,p) = (n,gp)

with respect to which, 7 is the projection on the space

of orbits.



P is a left principal G-bundle over N and the map 7y p

IS a submersion with fiber over the point p € P equal to

Tnv.p®) ={(n,p) € N x P|n(p) =7(n)}
=7 Y (r(p)) x {p} C P

and hence diffeomorphic to (= (p)).

Now suppose that there is a left action of G on a man-
ifold V. There are two associated bundles that one can
construct: P xsV and P x5 V. They are fiber bundles
over M and N respectively, both with fibers diffeomor-
phic to V.



The associated bundle P x5V — N is obtained from the
principal bundle = : P — M, the surjective submersion
T : N — M, and the G-manifold V by pull back and

association.

These operations can be reversed. First one forms the
associated bundle ng : [p,v] € E =P xqgV — 7n(p) € M
and then one pulls it back by the surjective submersion
T : N — M. One obtains the pull back bundle 7 : E —
N, whose fibers are all diffeomorphic to V, defined by

the following commutative diagram



B ’ E=PxgV
%E Uy
T
N M

E = {(n,[p,v]) | 7(n) = np(lp,v]) = n(p)}
Tg(n, [p,v]) :==n, 7 g(n, [p,v]) := [p,v].
The fibers of 7y g are equal to

(e o)) = {(n, [p,v]) | 7(n) = 7g([p,v]) = =(p)}
=717 (P) x {lp,v]} ~ 77 (= (p)).



There is a canonical bundle isomorphism over M

[(n,p),v] € P xaV — (n,[p,v]) € E.

STERNBERG SPACE

G x Q@ — Q free proper action, m: Q — Q/G
A € QL(Q; g) connection, V(Q), H(Q) vertical and hor-
izontal subbundles of TQ, V4(Q) = kerTym, Hy(Q) =

ker A(q) , TQ =V(Q) & H(Q).

Pull back w : @ — Q/G by the cotangent bundle pro-
jection 7g,q 1 T"(Q/G) — Q/G to get the G-principal



bundle

Q= {(ag,0) €T(Q/G) x Q| ld =7(q),q € Q}

over T*(Q/G) with fiber over o, diffeomorphic to 7~ 1([q]).
Recall that the G-action on Q is given by g- (ap,,q) 1=

(apg,9-q) for any g € G and (ap,,9) € Q.

3 TTH(Q/G),
5 /G),Q o

T T

| r0/c |
™(Q/G) -Q/G




Q) is a vector bundle over @Q which is isomorphic to the
annihilator V(Q)° C T*Q of V(Q) C TQ. For each q € @,

Ve(Q)° = {ag € TQ | {ag,60(0)) = 0} C TyQ
Form the coadjoint bundle of ), the Sternberg space
S:=Q xgg".
The map ¢4 : Q x g¥ — T*Q given by
(g a) ) = Tym(ag) +Al@) s

IS a G-equivariant vector bundle isomorphism over Q. It
descends to a vector bundle isomorphism over Q/G

P48 = (T*Q)/G.



The Sternberg space Poisson bracket {-,-}¢ is de-

fined as the pull back by ® 4 of the Poisson bracket of
(1T7Q)/G.
WEINSTEIN SPACE

Form the coadjoint bundle g* .= @ X ¢g*. Then pull it

back by the cotangent bundle projection TQ/G T(Q/G) —
Q/G and get

|44 ::{(Oé[q], [QMLL]) ~ T*(Q/G) X g* |
0,6 o) = mg(lg, u]) = lq]}



T (Q/G) 5"

W ik
77'@* ﬂ-fj*
‘ TQ/G ,
T(Q/G) - Q/G

7“%5*, %T*(Q/G),g'* first and second projections.

W is a vector bundle over T*(Q/@) with fiber =" (aj,) =
et (la)) = {lg, #] | 1 € g%} over o).

W is also a vector bundle over /G relative to the pro-
jection (e, lg,1]) € W — [q] € Q/G; the fiber over [q]



equals Wy, = T[Z](Q/G) @gfq]. That is, we have the

immediate identification
W=T(Q/G)®g"

as vector bundles of Q/G.

There exists a vector bundle isomorphism over Q/G
\UA : [aCI] S (T*Q)/G — (horzk](QQ)a [an(Oéq)]) S W7

where hOI’Q L= (TQW‘H(Q)q)_l : T[q](Q/G) — HQ(Q) C TqQ
is the horizontal lift operator. Thus hor(’; : T;Q —

T[Z](Q/G) is a linear surjective map whose kernel is the

annihilator H(Q), of the horizontal space.



The Weinstein space Poisson bracket {-, -}y is the
push forward by W 4 of the Poisson bracket of (T*Q)/G.

Recall that pull back and association commute.

The following diagram of vector bundle isomorphisms

over Q/G is commutative

(1"Q)/G



b (S, {,}tg) > (W, {,-}w) is an isomorphism of Pois-
son manifolds. Also, ®* : Wg[q] — Sg[q] restricted to each
fiber (which is isomorphic to g) is an isomorphism of Lie
algebras for every o, € T*(Q/G), that is, ®* : W* — §*

IS an isomorphism of Lie algebra bundles.

COVARIANT EXTERIOR DERIVATIVES
ON ASSOCIATED BUNDLES

m . P — M left principal G-bundle, V' a left representa-
tion space of G, horp : T (,yM — TpP the horizontal lift
operator at p € P of the given connection A € Q1 (P;g).

Then the horizontal lift operator of the induced affine



connection on the associated vector bundle np | E =

P xgV — M induced by A is given by

hOI’[p,U](um) L= T(p,v)ﬂ-PXV (horp(um), O) ,

where pe P, v eV, m=n(p) = [p|, um € T;nM, tpyy :
P xV — E is the orbit map, and [p,v] ;= 7pyy(p,v) € E.

The covariant derivative d 4f of f € C®°(P xqg V) rela-
tive to the affine connection given by this horizontal lift

operator is

d af([p, v]) (um) = df([p, v]) (nOr(, 4 (um)) € T M.



COVARIANT EXTERIOR DERIVATIVES
ON PULL BACK VECTOR BUNDLES

w . E — M vector bundle with an affine connection V,
N another manifold, 7 : N — M a surjective submersion.
Denote by E := {(n,¢) | 7(n) = w(e)} the pull back
bundle over N, which is a vector bundle 7 : & — N,
where 7 is the projection on the first factor N. Denote
by TN E E — E the projection on the second factor E
and recall that mo7y g = T7om. Denote for any e € k£ by
hore : T ()M — TeE the horizontal lift operator of the

connection V.



Define the horizontal lift operator hor,, .y : Th N — T(mE)E
hor(n,e) (vn) = (vp, hore T (vn))
for (n,e) € &, v, € Ty N.
If f € C®(E), its covariant exterior derivative Vf(n,¢) €
TXN is defined by
Vf(n,e)(va) :=df(n,e) hor(,, ) (vn)),

where (n,e) € P and v, € Ty N.



COVARIANT EXTERIOR DERIVATIVES
ON S AND W

Recall that @# : Q — T*(Q/G) is a principal G-bundle,
the pull back of 7 : Q@ — Q/G over the cotangent bun-

dle projection 75/, @ T*(Q/G) — Q/G. Recall that
?T*(Q/G),Q . Q — Q is the projection on the seccond

T . ~ 107 o\ :
factor. So A := T;*(Q/G)’QA c Q+(Q;g) is a connection.

Its horizontal lift is
O (ay.a) (vagy) = (vagy horg (Tagy g a(vay)) )

Ho, (@) = Tagy (TH(Q/G)) x Hy(Q).



For the case of the associated bundle 7’%@ S > T(Q/G),
S = Q xgg*, 75([(afq, @), 1l) = eq), the formula for the

associated horizontal lift at s = [(«a,, q), 1] € S becomes

hors(vay,) = T((Oé[q],Q),M)WQXg* (hOr(Oé[q],CI) Yaqg) O)
= T(ag )0 G ( (Y NOTa(Tagy7q 6 (vagy))) 0)

TOxg Qxg*—=S=0Q xgg*is the orbit projection.

Let f € C®(S), s = [(a[q],q),,u] € S. The pull back con-

nection one-form A € Q1(Q; g) defines hence a covector



d%f(s) < T;@(S)T*(Q/G) by

d%f(s) (va[q]) = df(s) (hors (UQ[Q]D =
A1 () (T((aga) 40 Gxg ( (Vg NOra(Tagy 7 6 (vay)) ) ,0))

where %Q(s) = ag, and and vqag,; € Ty, (T*(Q/G)).

W is the pull back of the vector bundle w3« @ §*Q/G,
which has an affine connection as an associated bundle,
by 76+ T*(Q/G) — Q/G. So there is an induced VW
covariant derivative on W. If f € C*°(W) then

6‘/Vf(()‘[q]a [Q7 :u]) — df(()é[q], [Q7 N]) O hor(a[q],[q,,u])
e T3, (T"(Q/G)).



POISSON BRACKETS ON S AND W

Let s = [(ag,9),p] € S and v = [g,u] € g*. The Poisson
bracket of f,g € C°°(S) is given by

{£,9}s(s) = Qg clagy) (A5f ()%, d%a(s)?)

4 <v,l§(a[q])< f(s)jj d>, 79(s) )> < [5f 59]>

§s s

where Q2 is the canonical symplectic form on T*(Q/G),
B e Q2(T*(Q/G);§) is thus the g-valued two-form on
T*(Q/G) given by B = Q/GB with B € Q2(Q/G,5),

f:T*(T*(Q/G)) —» T(T*(Q/G)) is the vector bundle iso-
morphism induced by Q. and §f/ds € S* = Q Xqggis



the usual fiber derivative of f at the point s € S, that is,

(" 50) =

for any s = [(a[q],q),u)] cS.

([(Ck[q], Q)a M + tV])

The third term has a more convenient expression. De-
note by éf/dv € g the unique element in the fiber at [q]
of the adjoint bundle g defined by the equality

SF\ d
(la.r50) = 2 F(Cagg o).+ t))
= (o001, )

for any v € g% where s = [(a[,, ), 1] € S = Q xgg* and

v=[q, n] €7*.



Thus §f/év is an element in g over the point [¢] € Q/G
and can therefore be paired with [q,v] € g*. Note that
we abuse here the symbol § f/év which should denote the
usual fiber derivative of a function on the vector bundle
g*; however, this makes no a priori sense in this case,
since f € C°°(S) is not a function on g*. Nevertheless
we retain this notation for it is suggestive of the result.

With this definition, for s = [(a[,,¢),p] € S and v =

)

lq, 1] € §*, we have

(o [5er gl = (v

of og
v’ dv




W — (Oé[q], [Q7FL])1 U = [Q,M]; B = Té/GB S QQ (T*(Q/G)vﬁ)
The Poisson bracket of f,g € C°°(W) is given by

{,gtw(w) = Qg alagg) (VA F(w)?, Vi g(w)?)
+ (v, Blagg) (VR f(w), VH g(w)?))

~( )

Of/dw € W* is the fiber derivative of f in W.

What are the symplectic leaves?



MINIMAL COUPLING CONSTRUCTION

Construction of presymplectic forms on associated bun-

dles.

o . P — B a left principal G-bundle, A € Q(P;g) a con-
nection one-form on P, (M,w) a Hamiltonian G-space
with equivariant momentum map J : M — g%, and de-
note by Np: PxXxM — P and Ny, : Px M — M the two
projections. Then (MM%,J, MpA) € QI (P x M) defined by

(M3 d, NpA) (p, m) (up, vm) = (IJ(m), A(p)(vp))



G-invariant one-form.

Thus, if Epeyr = (Ep, &) is the infinitesimal generator
of the diagonal G-action on P x M defined by £ € g, we
have £, , (M3,J,MHA) =0. A computation shows

i¢, . (d(N}J,NHA) 4+ Njw) = 0.

Since d (M%,J, MHA) 4+ M%,w is also G-invariant, it follows
that the closed two-form d (M%,J, M%.A) + M} ,w descends
to a closed two form w? € Q2(P xg M), that is, w? is
characterized by the relation

prwht = d (M5, MHA) + M w,



where p: Px M — P xo M is the projection to the orbit

Space.

Now assume, in addition, that the base (B,<2) is a sym-
plectic manifold and denote by op; : P Xg M — B the
associated fiber bundle projection given by o/([p, m]) =
o(p). Then 03,82 is also a closed two-form on P xg M
and one gets the minimal coupling presymplectic form
wA+0%,Q. In general, this presymplectic form is degen-

erate.



Apply the minimal coupling construction: P = @, B =
T*(Q/G), Q = QQ/G = _d@Q/G' o = T . (Oé[q],Q) -
Q — af, € T*(Q/G) , the connection on this principal G-
bundle is A = Tre0/a).0A € QL(Q;9), where Trv (g /a).0
Q) — Q is the projection on the second factor, (M,w) =
(O,wp), J=Jp : O = g*is given by Jp(u) = —p for any
pwegs and p: Q x O = Q Xz O is the quotient map for
the diagonal G-action. Note that p = 7TQ‘><g*|Q'><O where
T3 x g* - Q) X g¢ — S is the projection onto the G-orbit
space. Then oy = 7 : Q xqO — T*(Q/G) is given by
To((og> @), vl) = g



Denote the two form w# in this situation by @, and

hence it is uniquely characterized by the relation
p'ip = d(NpIo, N5A) + Npwo,

where I‘IQ:QXO—>@and Np : Q x O — O are the

projections on the two factors.

The two-form &y, + 752,/ on Q X O is obtained by

reduction.

e Recall: The G-equivariant vector bundle isomorphism
o4 - Q x g*¥ — T*Q is defined by @A«a[q],q),,u,) =
Tym(ap,) + Alg)*u for any ((ag,,q), 1) € @ x g*.



e Let Jpg 1 THQ — g* be the momentum map of the
lifted G-action. Define J4 := Jpr«gopg : Q X g* — g*.
Then Jyu = I‘Ig*, the projection on the second factor.
Hence J;ll((’)) =Q xO.

e Q4= —-dO 4 is a symplectic form on Q x g*, where

SECTARIND ((“a[q]’ ”q> ’ ”)
= <a[q], Tqﬂ(vq)> + (1, A(g) (vg))

~ ~

((Oz[q],q> ,/L) E Q X g*, (ua[q],vq) - T(Oz[q],q>Q' V& g*.

e SO0 J,:Q xg*— g*is the equivariant momentum map
of the canonical G-action on the symplectic manifold

(Q x g*,Q24).



e Therefore, Q xo O = J;ll(O)/G has the reduced sym-
plectic form &, + %Z?QQ/G'

The symplectic leaves of S are the connected compo-
nents of the symplectic manifolds (Q XqO,wpn + %Z?QQ/G),

where O is a coadjoint orbit in g*.



Recall that ® : S — W given by

® ([(eg, @)s 1) = (agg)- g 1l)

IS a Poisson diffeomorphism. T herefore, the symplectic
leaves of the Poisson manifold (W, {, }y/) are the con-

nected components of the symplectic manifolds

(CD (Q xq O), D, (@5 n %5962/@)) |

Who are they?



P (Q xg O)
= e la: 1) | g € Qagg € Ti(Q/G),n € O C g7}
=T"(Q/G) & (Q xg O)
CW=T"(Q/G)®g" =T"(Q/G) ®(Q xgg").

Here, T*(Q/G) D (Q xoO) is a fiber subbundle, not a vec-
tor subbundle, of T*(Q/G) ® g*; we still use the Whitney
sum symbol, even though it is a fibered product of fiber
bundles, to recall the fact that it is a subbundle of the
Whitney sum bundle W =T*(Q/G) & g*.



The closed G-invariant two-form wg, o € Q2(Q x O) de-
fined by

wéx(’)(Q7 :UJ) ((qu o adg :u)a (/UCD o ad;; :u))
= _d(A X IdO)(Q) /J') ((U’CP o adg :u)a (UCD o ad;; M))
+ wo(p) (—adf u, —ady ),

where A x idp € QL1(Q x g*) is given by
(A xidp) (g, 1) (ug, —adi p) = (i, A(q) (ug)),

drops to a closed two-form wc_ngO e Q2(Q xo O), that
IS, wc_szO IS uniquely determined by the identity

* J— _ J—
TRXOYQx 0O — YQxO>

where oo : @ XO — Q X5 O the orbit space projection.



The symplectic leaves of W are the connected compo-

nents of the symplectic manifolds

<T*(Q/G) S5 (Q X O), I_I;IZ:*(Q/G)QQ/G -+ H*QXGOwéXGO) :

where O is a coadjoint orbit in g*, QQ/G IS the canonical
symplectic form on T*(Q/G), WO x O is the closed two-
form on @ x¢ O given above, and My« g /q) 1 T7(Q/G) @
(Q xg 0) = TH(Q/G), Ngxyo : THQ/G) & (Q xg O) —
Q X O are the projections on the two factors.
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