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PLAN OF THE PRESENTATION

Liquid crystal dynamics: two models

Euler-Poincaré reduction

Affine Euler-Poincaré reduction

Euler-Poincaré formulation for liquid crystal dynamics

Eringen implies Ericksen-Leslie

Analytical results

All models are conservative: the terms modeling dissipation have been eliminated.
The reason is that we want to understand the geometric nature of these equations.
The dissipative terms can be added later. Think: Euler versus Navier-Stokes.
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LIQUID CRYSTALS

Tutorial: http://dept.kent.edu/spie/liquidcrystals/ by B. Senyuk

Liquid crystal: state of matter between crystal and isotropic liquid. Liquid behavior:
high fluidity, formation and coalescence of droplets. Crystal behavior: anisotropy in
optical, mechanical, electrical, magnetic properties. Long-range orientational order
in their molecules and sometimes translational or positional order. Many phases;
differ by their structure and physical properties.

History: Friedrich Reinitzer (1857 Prague – 1927 Graz) botanist and chemist. In
1888 he accidentaly discovered a strange behavior of cholesteryl benzoate that
would later be called “liquid crystal". Work continued by physicist Otto Lehmann
(1855 Konstanz – 1922 Karlsruhe), the “father" of liquid crystal technology. The
discovery received plenty of attention at the time but due to no practical use the
interest dropped soon. Lehmann was nominated 10 times (1913-22) for the Nobel
Prize; never got it.
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Georges Friedel (1865 Mulhouse – 1933 Strasbourg) mineralogist and crystallog-
rapher; in 1922 first classification of liquid crystals.

Carl Oseen (1879 Lund – 1944 Uppsala) theoretical physicist; first formulation of
elasticity theory of liquid crystals.

Since the mid 1960s the entire theoretical and experimental development in liquid
crystals has been influenced by the physicist Pierre-Gilles de Gennes (1932 Paris
– 2007 Orsay) who got the Nobel Prize in 1991. Unfortunately, his book is not very
useful to mathematicians. Better books are by Subrahmanyan Chandrasekhar and
especially Epifanio Virga, the most mathematical book I came across.

Mathematical formulation was driven by engineers by posing the questions to ap-
plied mathematicians: Ericksen, Leslie, Lhuillier, Rey, Eringen.

Main phases of liquid crystals are the nematic, smectic, cholesteric (chiral ne-
matic); molecules behave differently.

nematic ∼ “nema" (thread); smectic ∼ “smektos"(smeared), or “smechein" (to wash
out) + “tikos" (suffix for adjectives of Greek origin); cholesteric ∼ “khole"(bile) +
“steros"(solid, stiff) + “tikos"; chiral ∼ “cheir"(hand), introduced by Kelvin.
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From: DoITPoMS, University of Cambridge

From: http://boomeria.org/chemtextbook/cch16.html
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A microscope image showing that a solution of tiny DNA molecules has formed a
liquid-crystal phase. The DNA molecules pair to form DNA double helices, which,
in turn, stack end-to-end to make rod-shaped aggregates that orient parallel to one
another. Image by Michi Nakata, University of Colorado.
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Photos by Brian Johnstone. Cooling from liquid crystal state to solid crystal state. The circular
discs are the solid crystals.
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Nematic liquid crystal. Note disclinations.
From: DoITPoMS, University of Cambridge
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Nematic polymer; from: DoITPoMS, University of Cambridge
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The thick, slippery substance found at the bottom of a soap dish is a type of smectic liquid crystal.

Molecules in this phase have translational order not present in the nematic phase. The molecules
maintain orientational and align themselves in layers. Motion is restricted to within these planes
and separate planes flow past each other. Increased order means that the smectic state is more
“solid-like" than the nematic.

Smectic-A mesophase: the director is perpendicular to the smectic plane, no particular positional
order in the layer.

Smectic-B mesophase: the director is perpendicular to the smectic plane, but the molecules are
arranged into a network of hexagons within the layer (no picture).
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In the smectic-Cmesophase, molecules are arranged as in the smectic-Amesophase,
but the director is at a constant tilt angle relative to the smectic plane.
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From B. Senyuk at http://dept.kent.edu/spie/liquidcrystals/
Cholesteric liquid crystal
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M. Mitov/CNRS Photothèque. Cholesteric liquid crystal

CNRS-CEMES 2006: Iridescent colors of this rose chafer beetle are due to the organization in
cholesteric liquid crystal phase of the chitin molecules of the outer part of the shell
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Jerry Ericksen, born December 20, 1924.

Photo during an interview with John Ball on May 28, 2013
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Leslie and Ericksen in Glasgow in the mid 1970s

Frank Matthews Leslie (March 8, 1935 – June 15, 2000)



A. Cemal Eringen (February 15, 1921 – December 7, 2009)
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LIQUID CRYSTAL DYNAMICS

Director theory due to Oseen, Frank, Zöcher, Ericksen and Leslie

Micropolar and microstretch theories, due to Eringen, which take into account
the microinertia of the particles and which is applicable, for example, to liquid crystal
polymers

Ordered micropolar approach, due to Lhuillier and Rey, which combines the di-
rector theory with the micropolar models.

We discuss only nematic liquid crystals (K1 � 0 in free energy; no chirality n·curln).
We set all dissipation equal to zero; want to understand the conservative case first.

D ⊂ R3 bounded domain with smooth boundary. All boundary conditions are ig-
nored: in all integration by parts the boundary terms vanish. We fix a volume form
µ on D.
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ERICKSEN-LESLIE DIRECTOR THEORY
For nematic and cholesteric liquid crystals

Key assumption: only the direction and not the sense of the molecules matter. The
preferred orientation of the molecules around a point is described by a unit vector
n : D→ S2, called the director, and n and −n are assumed to be equivalent.

Ericksen-Leslie equations (Ericksen [1966], Leslie [1968]) in a domain D, con-
straint ‖n‖ � 1, are:




ρ

(
∂
∂t

u + ∇uu
)
� grad

∂F
∂ρ−1

− ∂j *
,
ρ
∂F
∂n, j
·∇n+

-
,

ρ J
D2

Dt2
n − 2qn + h � 0, h � ρ

∂F
∂n
− ∂i

(
ρ
∂F
∂n,i

)
∂
∂t
ρ + div(ρu) � 0,

D
Dt

:�
∂
∂t

+ ∇u �
∂
∂t

+ u · ∇

u Eulerian velocity, ρ mass density, n : D → R3 director (n equivalent to -n), J
microinertia constant, and F(n, n,i) is the free energy:
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A standard choice for F is the Oseen-Zöcher-Frank free energy:

ρF(ρ−1, n,∇n) �
1
2

K11 (divn)2︸   ︷︷   ︸
splay

+
1
2

K22 (n · curln)2︸        ︷︷        ︸
twist

+
1
2

K33 ‖n × curln‖2︸          ︷︷          ︸
bend

,

associated to the basic type of director distorsions nematics:

(a) splay, (b) bend, (c) twist

WHAT IS THE VARIATIONAL/HAMILTONIAN STRUCTURE OF THESE EQUATIONS?
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ERINGEN MICROPOLAR THEORY

First key assumption: Replace point particles by small deformable bodies: mi-
crofluids. Examples: liquid crystals, blood, polymer melts, bubbly fluids, suspen-
sions with deformable particles, biological fluids. Eringen [1978], [1979], [1981],...

Amaterial particle P in a microfluid is characterized by its position X and by a vector
Ξ attached to P that denotes the orientation and intrinsic deformation of P. Both X
and Ξ have their own motions: X 7→ x � η(X, t) and Ξ 7→ ξ � χ(X,Ξ, t) called,
respectively, the macromotion and micromotion.

Second key assumption: Material bodies are very small, so a linear approximation
in Ξ is permissible for the micromotion:

ξ � χ(X, t)Ξ,

where χ(X, t) ∈ GL(3)+ :� {A ∈ GL(3) | det(A) > 0}.
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The classical Eringen theory considers only three possible groups in the description
of the micromotion of the particles:

GL(3)+(micromorphic) ⊃ K(3)(microstretch) ⊃ SO(3)(micropolar),

K(3) �
{
A ∈ GL(3)+ | there exists λ ∈ R such that AAT

� λI3
}

is a closed subgroup of GL(3)+; associated to rotations and stretch.

The general theory admits other groups describing the micromotion.

We will study only micropolar fluids, i.e., the order parameter group is

O :� SO(3)

.
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Eringen’s equations for non-dissipative micropolar liquid crystals:




ρ
D
Dt

ul � ∂l
∂Ψ

∂ρ−1
− ∂k *

,
ρ
∂Ψ

∂γa
k
γa

l
+
-
, ρσl � ∂k

*.
,
ρ
∂Ψ

∂γl
k

+/
-
− εlmnρ

∂Ψ

∂γa
m
γa

n ,

D
Dt
ρ + ρ divu � 0,

D
Dt

jkl + (εkpr jlp + εlpr jkp)νr � 0,

D
Dt
γa

l � ∂lνa + νabγ
b
l − γ

a
r∂lur ,

D
Dt

:�
∂
∂t

+ u · ∇ mat. deriv.

sum on repeated indices, u ∈ X(D) Eulerian velocity, ρ ∈ F(D) mass density,
ν ∈ F(D,R3) microrotation rate, where we use the standard isomorphism between
so(3) and R3, jkl ∈ F(D, Sym(3)) microinertia tensor (symmetric), σk spin inertia
is defined by

σk :� jkl
D
Dt
νl + εklm jmnνlνn �

D
Dt

( jklνl),

γ � (γab
i ) ∈ Ω1(D, so(3)) wryness tensor, related to (η, χ) by

γ � −η∗(∇χ)χ−1 �: γ̂ � (̂γa
i ),

andΨ � Ψ(ρ−1, j, γ) : R × Sym(3) × gl(3) → R is the free energy.
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WHAT IS THE VARIATIONAL/HAMILTONIAN STRUCTUREOF THESE EQUA-
TIONS?

WHAT IS THE RELATION BETWEEN ERICKSEN-LESLIE AND ERINGEN
THEORY?

Eringen’s claim: Eringen theory recovers Ericksen-Leslie theory in the rod-like as-
sumption j � J (I − n ⊗ n) with the choice γ � ∇n × n.

Once we have the Euler-Poincaré formulation, it will be clear that γ � ∇n×n cannot
be considered as a definition! This is FALSE!

This statement has been controversial due to mistakes:
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e.g. paper by Rymarz [1990]
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This was soon reconsidered in Eringen [1993]

more precisely
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This was an open problem for about 25 years.

We solve this problem using techniques of geometric mechanics:

(1) we show under which assumptions, Eringen reduces to Ericksen-Leslie

(2) we establish the correct relation between γ and n under these assumptions.

{ Both Eringen and Rymarz are partially right!
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EULER-POINCARÉ REDUCTION

Poincaré 1901: Left (right) invariant Lagrangian L : TG → R, l :� L |g : g → R.
For g(t) ∈ G, let ξ(t) � g(t)−1 ġ(t)

(
ġ(t)g(t)−1 ∈ g

)
.

Then the following are equivalent:
(i) g(t) satisfies the Euler-Lagrange equations for L on G.
(ii) The variational principle

δ

∫ b

a
L(g(t), ġ(t))dt � 0

holds, for variations with fixed endpoints.

(iii) The Euler-Poincaré equations hold:
d
dt
δl
δξ

� ±ad∗ξ
δl
δξ
.

(iv) The Euler-Poincaré variational principle

δ

∫ b

a
l(ξ(t))dt � 0

holds on g, for variations δξ � η̇ ± [ξ, η], where η(t) is an arbitrary path in g that
vanishes at the endpoints, i.e η(a) � η(b) � 0.

IMPA, Mathematical Physics Seminar, November 17, 2015

25



Geometry has led to analytic questions. I am not aware of any serious analysis
results for such constrained variational principles.

Reconstruction

Solve the Euler-Lagrange equations for a left invariant L : TG → R

• Form l :� L |g : g→ R

• Solve the Euler-Poincaré equations: d
dt
δl
δξ � ad∗ξ

δl
δξ , ξ(0) � ξ0

• Solve linear equation with time dependent coefficients (quadrature): ġ(t) �

g(t)ξ(t), g(0) � e

• For any g0 ∈ G the solution of the Euler-Lagrange equations isV (t) � g0g(t)ξ(t)
with initial condition V (0) � g0ξ0.

EP reduction: free rigid body, ideal fluids, KdV
EP reduction for semidirect products: heavy rigid body, compressible fluids, MHD,
GFD. Holm, Marsden, Ratiu [1998]
Geometry of complex fluids. Holm [2002], Gay-Balmaz, Ratiu [2009]
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AFFINE EULER-POINCARÉ REDUCTION

Right G-representation on V , (v , g) ∈ V × G 7→ v g ∈ V , induces:

• right G-representation on V∗: (a , g) ∈ V∗ × G 7→ a g ∈ V∗

• right g-representation on V : (v , ξ) ∈ V × g 7→ vξ ∈ V

• right g-representation on V∗: (a , ξ) ∈ V∗ × g 7→ aξ ∈ V∗

Duality pairings: 〈 , 〉g : g∗ × g→ R and 〈 , 〉V : V∗ × V → R

Affine right representation: θg (a) � a g+ c(g), where c ∈ F(G,V∗) is a right group
one-cocycle, i.e., c( f g) � c( f )g + c(g), ∀ f , g ∈ G. This implies that c(e) � 0 and
c(g−1) � −c(g)g−1. Note that

d
dt

�����t�0
θexp(tξ)(a) � aξ + dc(ξ), ξ ∈ g, a ∈ V∗,

where dc : g→ V∗ is defined by dc(ξ) :� Tec(ξ). Useful to introduce:
IMPA, Mathematical Physics Seminar, November 17, 2015
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• dcT : V → g∗ by 〈dcT(v), ξ〉g :� 〈dc(ξ), v〉V , for ξ ∈ g, v ∈ V

• � : V × V∗→ g∗ by 〈v � a , ξ〉g :� − 〈aξ, v〉V for ξ ∈ g, v ∈ V , a ∈ V∗

• then: 〈aξ + dc(ξ), v〉V � 〈dcT(v) − v � a , ξ〉g

• the semidirect product S � GsV with group multiplication

(g1, v1)(g2, v2) :� (g1g2, v2 + v1g2), gi ∈ G, vi ∈ V

• its Lie algebra s � gsV with bracket

ad(ξ1,v1)(ξ2, v2) :� [(ξ1, v1), (ξ2, v2)] � ([ξ1, ξ2], v1ξ2 − v2ξ1)

• then for (ξ, v) ∈ s and (µ, a) ∈ s∗ � g∗ × V∗ we have

ad∗(ξ,v)(µ, a) � (ad∗ξ µ + v � a , aξ)

In a physical problem (like liquid crystals) we are given:
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• L : TG × V∗→ R right G-invariant under the action
(vh , a) ∈ ThG × V∗

g
7−→ (vh g , θg (a)) � (vh g , a g + c(g)) ∈ Th gG × V∗.

• So, if a0 ∈ V∗, define La0 : TG → R by La0(vg) :� L(vg , a0). Then La0 is
right invariant under the lift to TG of right translation of Gc

a0 on G, where Gc
a0 is the

θ-isotropy group of a0.

• Right G-invariance of L permits us to define l : g × V∗→ R by

l(vg g−1, θg−1(a0)) � L(vg , a0).

• Curve g(t) ∈ G, let ξ(t) :� ġ(t)g(t)−1 ∈ g, a(t) � θg(t)−1(a0) ∈ V∗ Then
a(t) as the unique solution of the following affine differential equation with time
dependent coefficients

ȧ(t) � −a(t)ξ(t) − dc(ξ(t)),

with initial condition a(0) � a0 ∈ V∗.

The following are equivalent:
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(i) With a0 held fixed, Hamilton’s variational principle

δ

∫ t2

t1
La0(g(t), ġ(t))dt � 0,

holds, for variations δg(t) of g(t) vanishing at the endpoints.

(ii) g(t) satisfies the Euler-Lagrange equations for La0 on G.

(iii) The constrained variational principle

δ

∫ t2

t1
l(ξ(t), a(t))dt � 0,

holds on g × V∗, upon using variations of the form

δξ �
∂η

∂t
− [ξ, η], δa � −aη − dc(η),

where η(t) ∈ g vanishes at the endpoints.

(iv) The affine Euler-Poincaré equations hold on g × V∗:

∂
∂t
δl
δξ

� − ad∗ξ
δl
δξ

+
δl
δa
� a − dcT

(
δl
δa

)
.
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Lagrangian Approach to Continuum Theories
of Perfect Complex Fluids

To apply the previous theorem to complex fluids one makes two key observations:
1. Complex fluids have internal degrees of freedom encoded by the order parameter
Lie group O

2. New kind of advection equation:
D
Dt
γa

l � ∂lνa + νabγ
b
l − γ

a
r∂lur

Geometrically, this means:

1. Enlarge the “particle relabeling group" Diff(D) to the semidirect product G �

Diff(D)sF(D,O), F(D,O) :� {χ : D→ O smooth}
2. The usual advection equations (for the mass density, the entropy, the magnetic
field, etc) need to be augmented by a new advected quantity on which the group G
acts by an affine representation.
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Algebraic structure of the symmetry group of complex fluids:

Diff(D) acts on F(D,O) via the right action

(η, χ) ∈ Diff(D) × F(D,O) 7→ χ ◦ η ∈ F(D,O).

Therefore, the group multiplication is given by

(η, χ)(ϕ, ψ) � (η ◦ ϕ, (χ ◦ ϕ)ψ).

Fix a volume form µ on D, so identify densities with functions, one-form densitities
with one-forms, etc.

The Lie algebra g of the semidirect product group is

g � X(D)sF(D, o) 3 (u, ν),

and the Lie bracket is computed to be

ad(u,ν)(v, ζ) � (adu v, adν ζ + dν · v − dζ · u),

where adu v � −[u, v], adν ζ ∈ F(D, o) is given by adν ζ(x) :� adν(x) ζ(x), and
dν · v ∈ F(D, o) is given by dν · v(x) :� dν(x)(v(x)).
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The dual Lie algebra is identified with

g∗ � Ω1(D)sF(D, o∗) 3 (m, κ),
through the pairing

〈(m, κ), (u, ν)〉 �
∫
D

(m · u + κ · ν) µ.

The dual map to ad(u,ν) is

ad∗(u,ν)(m, κ) �
(
£um + (divu)m + κ · dν, ad∗ν κ + div(uκ)

)
.

Explanation of the symbols:

• κ · dν ∈ Ω1(D) denotes the one-form defined by(
κ · dν

)
(vx) :� κ(x)(dν(vx))

• ad∗ν κ ∈ F(D, o∗) denotes the o∗-valued mapping defined by(
ad∗ν κ

)
(x) :� ad∗ν(x)(κ(x)).

• uκ is the 1-contravariant tensor field with values in o∗ defined by

(uκ)(αx) :� αx (u(x))κ(x) ∈ o∗.
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So uκ is a generalization of the notion of a vector field. X(D, o∗) denotes the space
of all o∗-valued 1-contravariant tensor fields.

•div(u) denotes the divergence of the vector fielduwith respect to the fixed volume
form µ. Recall that it is defined by the condition

(divu)µ � £uµ.

This operator can be naturally extended to the space X(D, o∗) as follows. For w ∈
X(D, o∗) we write w � waεa where (εa) is a basis of o∗ and wa ∈ X(D). We define
div : X(D, o∗) → F(D, o∗) by

div w :� (div wa)εa .

Note that if w � uκ we have

div(uκ) � dκ · u + (divu)κ.

Split the space of advected quantities in two: usual ones and new ones that involve
affine actions and cocycles.
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GEOMETRY OF THE ERICKSEN-LESLIE EQUATIONS

• Symmetry group: G � Diff(D)sF(D, SO(3)) 3 (η, χ), macromotion and mi-
cromotion.

• Advected variables: V∗ � F(D) × F(D,R3) 3 (ρ, n), mass density and director
field.

• Representation of G on V∗:

(ρ, n) 7→
(
J (η)(ρ ◦ η), χ−1(n ◦ η)

)
.

• Associated infinitesimal actions and diamond operations:

nu � ∇n · u, nν � n × ν, m �1 n � −∇nT ·m and m �2 n � n ×m,

where ν,m, n ∈ F(D,R3).

• No cocycle.
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• EP equations for
(
Diff(D)sF(D, SO(3))

)
s

(
F(D) × F(D,R3)

)
:




∂
∂t
δ`
δu

� −£u
δ`
δu
− divu

δ`
δu
−
δl
δν
·dν + ρ d

δ`
δρ
−

(
∇nT ·

δ`
δn

) [
,

∂
∂t
δ`
δν

� ν ×
δ`
δν
− div

(
δ`
δν

u
)
+ n ×

δ`
δn
,

• The advection equations are:




∂
∂t
ρ + div(ρu) � 0,

∂
∂t

n + ∇n·u + n × ν � 0.

• Reduced Lagrangian for nematic and cholesteric liquid crystals:

`(u, ν, ρ, n) :�
1
2

∫
D
ρ‖u‖2µ +

1
2

∫
D
ρ J‖ν‖2µ −

∫
D
ρF(ρ−1, n,∇n)µ.
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• EP equations for this `: yield

(motion)




ρ

(
∂
∂t

u + ∇uu
)
� grad

∂F
∂ρ−1

− ∂i

(
ρ
∂F
∂n,i
·∇n

)
,

ρ J
D
Dt
ν � h × n,

(advection)




∂
∂t
ρ + div(ρu) � 0,

D
Dt

n � ν × n,

• Recovering the Ericksen-Leslie equations:
Observation: if ν and n are solutions of the EP equations then:

(i) ‖n0‖ � 1 implies ‖n‖ � 1 for all time.

(ii) D
Dt (n·ν) � 0. Therefore, n0 ·ν0 � 0 implies n·ν � 0 for all time.
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(iii) Suppose that n0 ·ν0 � 0 and ‖n0‖ � 1. Then

D
Dt

n � ν × n becomes ν � n ×
D
Dt

n

and

ρ J
D
Dt
ν � h × n becomes ρ J

D2

Dt2
n − 2qn + h � 0.

Therefore:
If (u, ν, ρ, n) is a solution of the Euler-Poincaré equations with initial conditions n0
and ν0 satisfying ‖n0‖ � 1 and n0 · ν0 � 0, then (u, ρ, n) is a solution of the
Ericksen-Leslie equations.
Conversely:
if (u, ρ, n) is a solution of Ericksen-Leslie equations, define

ν :� n ×
D
Dt

n ∈ F(D,R3).

Then, (u, ν, ρ, n) is a solution of the Euler-Poincaré equations.
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GEOMETRY OF THE ERINGEN EQUATIONS

• Symmetry group: same group as before G � Diff(D)sF(D,O).

• Advected variables: V∗ � F(D) × F(D, Sym(3)) × Ω1(D, so(3)) 3 (ρ, j, γ),
mass density, microinertia tensor, strain.

• Representation: (η, χ) ∈ Diff(D)sF(D, SO(3)) acts linearly on the advected
quantities (ρ, j) ∈ F(D) × F(D, Sym(3)), by

(ρ, j) 7→
(
J (η)(ρ ◦ η), χT( j ◦ η)χ

)
, χT � χ−1.

•Affine representation: (η, χ) ∈ Diff(D)sF(D, SO(3)) acts on γ ∈ Ω1(D, so(3))
by an affine representation

γ 7→ χ−1(η∗γ)χ + χ−1∇χ.

Note that γ transforms as a connection.
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• The reduced Lagrangian of Eringen’s theory:

` :
[
X(D)sF(D,R3)

]
s

[
F(D) ⊕ F(D, Sym(3)) ⊕ Ω1(D, so(3))

]
→ R

`(u, ν, ρ, j, γ) �
1
2

∫
D
ρ‖u‖2µ +

1
2

∫
D
ρ

(
jν ·ν

)
µ −

∫
D
ρΨ(ρ−1, j, γ)µ.

• The affine Euler-Poincaré equations for ` are:




ρ

(
∂
∂t

u + ∇uu
)
� grad

∂Ψ

∂ρ−1
− ∂k *

,
ρ
∂Ψ

∂γa
k
γa+

-
,

j
D
Dt
ν − ( jν) × ν � −

1
ρ
div

(
ρ
∂Ψ
∂γ

)
+ γa

×
∂Ψ
∂γa ,

∂
∂t
ρ + div(ρu) � 0,

D
Dt

j + [ j, ν] � 0,

∂
∂t
γ + £uγ + dγν � 0, ν̂ � ν ∈ F(D, so(3)),

where dγ is the covariant γ-derivative defined by dγν(v) :� dν(v)+[γ(v), ν]. This
system recovers Eringen’s equations.
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The general affine Euler-Poincaré theory applied to many other complex fluids: spin
chain, Yang-Mills MHD (classical and superfluid), Hall MHD, multivelocity superflu-
ids (classical and superfluid), HBVK dynamics for superfluid 4He, Volovik-Dotsenko
spin glasses, microfluids, Lhuillier-Rey equations (see Gay-Balmaz & Ratiu [2009]).

Kelvin-Noether circulation theorem for micropolar liquid crystals

d
dt

∮
Ct

u[ �
∮

Ct

∂Ψ
∂ j

d j +
∂Ψ
∂γ

i dγ −
1
ρ
div

(
ρ
∂Ψ
∂γ

)
γ.

The γ-circulation formulated in R3

d
dt

∮
Ct
γ �

∮
Ct
ν × γ
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ERINGEN IMPLIES ERICKSEN-LESLIE

Physically, the Eringen equations should imply the Ericksen-Leslie equations. Erin-
gen [1993] proposes

j :� J (I3 − n ⊗ n), γ :� ∇n × n

to pass from his equations to the Ericksen-Leslie equations. This is FALSE! Two
arguments: brute force computation and symmetry considerations. So, one needs
to do something else.
However, not all is wrong:
1. it is true that there isΨ( j, γ) such that

Ψ
(
J (I3 − n ⊗ n),∇n × n

)
� F(n,∇n).

2. the definition j :� J (I3 − n ⊗ n) is geometrically consistent.

WE SHALL USE THE TOOLS OF GEOMETRIC MECHANICS TO GIVE A
DEFINITIVE ANSWER.
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Note: For simplicity, we consider motionless nematics. The present approach eas-
ily generalizes to the flowing case.

STEP I: γ-formulation of Ericksen-Leslie
Thematerial Lagrangian for nematicmotionless liquid crystalsL : TF(D, SO(3)) →
R, D ⊂ R3, is thus given by

L(χ, χ̇) �
1
2

J
∫
D
‖χ̇n0‖2µ −

∫
D

F(χn0,∇(χn0))µ,

where, usually n0 � ẑ, J is the microinertia constant, and F is the Oseen-Frank free
energy:

F(n,∇n) � K2 (n · curln)︸       ︷︷       ︸
chirality

+
1
2

K11 (divn)2︸   ︷︷   ︸
splay

+
1
2

K22 (n · curln)2︸        ︷︷        ︸
twist

+
1
2

K33 ‖n × curln‖2︸          ︷︷          ︸
bend

.

IDEA: Apply two different EP reductions to this Lagrangian.
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FIRST EULER-POINCARÉ REDUCTION FOR NEMATICS

Write L(χ, χ̇) � Ln0(χ, χ̇), where the Lagrangian

Ln0 : TF(D,SO(3)) → R

is invariant under the right action

(χ, n0) 7→
(
χψ, ψ−1n0

)
of ψ ∈ F(D, SO(3))n0 (the Ga0 of the general theory). So get the reduced Euler-
Poincaré Lagrangian

`1(ν, n) �
1
2

J
∫
D
‖ν × n‖2µ −

∫
D

F(n,∇n)µ,

ν̂ � χ̇χ−1, n � χn0. The Euler-Poinaré equations are




d
dt
δ`1
δν

� ν ×
δ`1
δν

+ n ×
δ`1
δn

∂tn + n × ν � 0
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More explicitly, upon denoting h � −δ`1/δn, one has{
J∂tν � h × n
∂tn + n × ν � 0,

which are the Ericksen-Leslie equations of nematodynamics
if ‖n0‖ � 1 and ν0 · n0 � 0:

J
d2n
dt2
− 2

(
n · h + J n ·

d2n
dt2

)
︸                 ︷︷                 ︸

�q

n + h � 0.
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SECOND EULER-POINCARÉ REDUCTION FOR NEMATICS

Start with the same Lagrangian. If n0 is constant, we can write

L(χ, χ̇) �
1
2

J
∫
D
‖χ̇n0‖2µ −

∫
D

F(χn0,∇(χn0))µ

�
1
2

J
∫
D
‖χ̇n0‖2µ −

∫
D

F(χn0, (∇χ) χ−1 · χn0))µ,

and we view L as

L(χ, χ̇) � L(n0,γ0�0)(χ, χ̇).

This Lagrangian is invariant under the right action

(χ, n0, γ0) 7→
(
χψ, ψ−1n0, ψ−1γ0ψ + ψ−1∇ψ

)
of the isotropy subgroup F(D, SO(3))(n0,0) � F(D, S1) ∩ SO(3) � S1 (the Gc

a0 of
the general theory).
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So we get the reduced affine Euler-Poincaré Lagrangian

`2(ν, n, γ) �
1
2

J
∫
D
‖ν × n‖2 µ −

∫
D

F(n,−γ × n)µ.

ν̂ � χ̇χ−1, n � χn0, γ � −(∇χ) χ−1 ∈ Ω1(D, so(3)).

{ The correct relation bewteen γ and n is ∇n � n × γ and not γ :� ∇n × n.

Notations:
γ � γ̂. For γ � γidx i

∈ Ω1(D;R3), define γ × n ∈ Ω1(D,R3) by γ × n �(
γi × n

)
dx i, or

(γ × n)(vx) � γ(vx) × n, vx ∈ TxD.

Important: L(χ, χ̇, n0, γ0) may not be defined when γ0 , 0. `2 is only defined on
the orbit of γ0 � 0, i.e., if γ � −(∇χ)χ−1. However, this does not affect reduction,
as long as the expression L(χ, χ̇, n0, 0) is invariant under the isotropy group of
γ0 � 0. This occurs in the reduction for molecular strand dynamics with nonlocal
interactions (Ellis, Gay-Balmaz, Holm, Putkaradze, Ratiu [2010]).
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The affine Euler-Poincaré equations are




d
dt
δ`2
δν

� ν ×
δ`2
δν

+ div
δ`2
δγ

+ Tr
(
γ ×

δ`2
δγ

)
+ n ×

δ`2
δn

∂tn + n × ν � 0
∂tγ + γ × ν + ∇ν � 0, γ0 � 0.

If γ0 , 0, these reduced equations still make sense, and they are an extension
of EL dynamics to account for disclination dynamics. Note that these equations
consistently preserve the relation ∇n � n × γ, since(

∂
∂t
− ν×

)
(∇n − n × γ) � 0 .

EP equations for `1 and AEP equations `2 are equivalent since they are induced
by the SAME Euler-Lagrange equations for L(χ, χ̇) on TF(D, SO(3)).
Moreover, the AEP equations allow for a generalization of Ericksen-Leslie to the
case with disclinations.
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STEP II: Eringen micropolar theory contains Ericksen-Leslie director theory as a
particular case

Recall:
1. Eringen’s Lagrangian (motionless case, i.e., no macromotion)

L(χ, χ̇) �
1
2

∫
D
Tr

(
(i0χ

−1χ̇)Tχ−1χ̇
)
µ −

∫
D
Ψ(χ j0χ

−1, χ∇χ−1 + χγ0χ−1)µ,

was interpreted as L � L( j0,γ0), where i0 :� 1
2 Tr( j0)I3 − j0. This Lagrangian is

invariant under the right affine action

(χ, j0, γ0) 7→
(
χψ, ψ−1 j0ψ, ψ

−1γ0ψ + ψ−1∇ψ
)

of the isotropy subgroup F(D, SO(3))( j0,γ0).
2. Reduced Lagrangian

`2(ν, j, γ) �
1
2

∫
D

( jν) · νµ −
∫
D
Ψ( j, γ)µ.

3. Eringen’s equation are the affine Euler-Poincaré equations for:
G � F(D, SO(3))
V∗ � F(D, Sym(3)) ×Ω1(D, so(3)).
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II.1 Rod-like assumption

Take as initial condition j0 � J (I − n0 ⊗ n0).
This definition is F(D, SO(3))-equivariant, so that j � J (I − n ⊗ n) for all time.

Consider L(χ, χ̇) � L(n0,γ0) (χ, χ̇) :� L( j0�J (I−n0⊗n0),γ0) (χ, χ̇). This Lagrangian
is invariant under the right action

(χ, n0, γ0) 7→
(
χψ, ψ−1n0, ψ−1γ0ψ + ψ−1∇ψ

)
of the isotropy subgroup F(D, SO(3))(n0,γ0).
Reduced Lagrangian

`′2(ν, n, γ) : � `2(ν, J (I − n ⊗ n), γ)

�
J
2

∫
D
‖ν × n‖2µ −

∫
D
Ψ( J (I − n ⊗ n), γ)µ,

AffineEuler-Poincaré equations for `′2 are equivalent to Eringen’s equations in which
the rod-like assumption has been assumed.

It remains to show that these equations contain, as particular case, the Ericksen-
Leslie equations.
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II.2 No disclination assumption γ0 � 0

Same step as earlier: suppose that n0 is constant and take γ0 � 0.
So the evolution of γ is given by

γ � θχ−1(0) � −(∇χ)χ−1.

Since n � χn0, we get ∇n � n × γ.
II.3 Recovering the Oseen-Frank free energy

Recall thatΨ � Ψ( j, γ), rod-like assumption j � J (I − n ⊗ n), and

F(n,∇n) � K2 (n · curln)︸       ︷︷       ︸
chirality

+
1
2

K11 (divn)2︸   ︷︷   ︸
splay

+
1
2

K22 (n · curln)2︸        ︷︷        ︸
twist

+
1
2

K33 ‖n × curln‖2︸          ︷︷          ︸
bend

;

K2 , 0 for cholesterics, K2 � 0 for nematics.
So we need to show that there existsΨ � Ψ( j, γ) such that

Ψ( j, γ) � Ψ( J (I − n ⊗ n), γ) � F(n, n × γ) � F(n,∇n).
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Lemma The Oseen-Frank free energy can be expressed in terms of Ψ � Ψ( j, γ)
as

Ψ( j, γ) �
K2
J
Tr( jγ) +

K11
J

(
Tr

(
(γA)2

) (
Tr( j) − J

)
− 2 Tr

(
j(γA)2

))
+
1
2

K22
J2

Tr2( jγ) −
K33

J
Tr

((
(γ j)A

− JγA
)2)

.

So we can rewrite the reduced Eringen Lagrangian in the rod-like assumption

`′2(ν, n, γ) � `2(ν, J (I − n ⊗ n), γ)

�
J
2

∫
D
‖ν × n‖2µ −

∫
D
Ψ( J (I − n ⊗ n), γ)µ

as

`′2(ν, n, γ) �
J
2

∫
D
‖ν × n‖2µ −

∫
D

F(n, n × γ)µ,

Same substitution in the unreduced Eringen Lagrangian in the rod-like assumption
yields L(χ, χ̇) � L(n0,γ0�0)(χ, χ̇).
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II.4 Recovering Ericksen-Leslie theory

1. Interpret now this L(χ, χ̇) as Ln0(χ, χ̇) instead of L(n0,γ�0)(χ, χ̇).

2. Check that this Lagrangian isF(D, SO(3))n0-invariant under the action (χ, n0) 7→(
χψ, ψ−1n0

)
.

3. Implement Euler-Poincaré reduction associated to the action (χ, n0) 7→
(
χψ, ψ−1n0

)
and obtain the reduced Lagrangian

`′1(ν, n) �
J
2

∫
D
‖ν × n‖2µ −

∫
D

F(n,∇n)µ

(Previously we considered affine Euler-Poincaré reduction associated to the action
(χ, n0, γ0) 7→

(
χψ, ψ−1n0, ψ−1γ0ψ + ψ−1∇ψ

)
, with reduced Lagrangian `′2).

By general reduction theory: EP equations for `′1 and AEP equations `′2 are equiv-
alent since they are induced by the SAME Euler-Lagrange equations for L(χ, χ̇)
on TF(D, SO(3)).
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It remains to show that the EP equations for `′1 are the Ericksen-Leslie equations.
True, by direct verification.

We have thus proved:

THEOREM: The Eringen micropolar theory of liquid crystals contains as a partic-
ular case the Ericksen-Leslie director theory. More precisely, the Ericksen-Leslie
theory is recovered by assuming rod-like molecules: j � J (I− n ⊗ n) and absence
of disclinations γ0 � 0.

Summary of method:

- This is shown by considering two distinct Euler-Poincaré reductions associated
with distinct advected quantities.

- This allows us to replace the non-consistent definition γ :� ∇n× n by the relation
∇n � n × γ and to solve the inconsistencies in Eringen’s approach.
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new �
∇ j �

[
j, γ̂

]
- Eringen

Ericksen-Leslie

j � J (I − n ⊗ n)

6

�
∇n � n × γ

- new

j � J (I − n ⊗ n)

6

Lhuillier-Rey

j � J (I − n ⊗ n)

?
�

∇n � n × γ
- new

j � J (I − n ⊗ n)

?

The Lagrangians underlying the different theories. The Lagrangians on the center
line identify the material descriptions of the models. The slanted arrows denote the
Euler-Poincaré reduction processes while vertical arrows show how the theories are
embedded in each other. By Euler-Poincaré reduction theory, all the Lagrangians
related by a dashed arrow are equivalent. One of the consequences of the next is
that any concrete question in a given model can be treated, equivalently, with any
of the three Lagrangians in a given triangle.
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L(χ, χ̇, χ j0χ−1,∇(χ j0χ−1))

`1(ν, j,∇ j) �
∇ j �

[
j, γ̂

]
-

�

j � χ
j0χ
−1 6

`2(ν, j, γ)

j � χ j0χ −1γ
� −(∇χ)χ −1 -

L(χ, χ̇, χn0,∇(χn0))

j0 � J (I − n0 ⊗ n0)

`1(ν, n,∇n)

j � J (I − n ⊗ n)

6

�
∇n � n × γ

-
�

n � χ
n0

`2(ν, n, γ)

j � J (I − n ⊗ n)

6

n � χn0γ
� −(∇χ)χ −1 -

L(χ, χ̇, χ j0χ−1, χn0,∇(χn0))

j0 � J (I − n0 ⊗ n0)

?

`1(ν, j, n,∇n)

j � J (I − n ⊗ n)

?
�

∇n � n × γ
-

�

n � χ
n0

j � χ
j0χ
−1

`2(ν, j, n, γ)

j � J (I − n ⊗ n)

?

n � χn0 , j � χ j0χ −1
γ
� −(∇χ)χ −1 -

ν̂ :� χ̇χ−1
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Final remarks: 1.) All the discussion here can be easily extended to moving liquid
crystals. One applies EP, respectively affine EP, theory, as discussed earlier. Then
the same considerations as above show that Eringen micropolar theory contains
Ericksen-Leslie nematodynamics.
2.) Other inconsistencies in the micropolar description: Eringen defines a smectic
liquid crystal by Tr(γ) � γ11 + γ

2
2 + γ

3
3 � 0. This is not preserved by the evolution

γ � η∗
(
χγ0χ

−1 + χ∇χ−1
)
.

Consistent with the statement: the equation

∂γ

∂t
+ £uγ + dν + γ × ν � 0

does not imply that if Tr(γ0) � 0 then Tr(γ) � 0 for all time.
Is Eringen’s definition of smectic incorrect? Instead of the trace need anF(D, SO(3))-
invariant function (of γ) under the action

v 7→ χ−1v + χ−1∇χ, v ∈ F(D,R3), χ ∈ F(D, SO(3)).

We do not know how to choose a physically reasonable function of this type.
3.) Other difficulties in liquid crystals dynamics may be solved by using the tools of
geometric mechanics (disclinations, defects,...)
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ANALYTICAL RESULTS
Esistence and uniqueness for 2D Ericksen-Leslie theory
G.A. Chechkin, T.S. Ratiu, M.R. Romanov, V.N Samokhin

Incompressible viscous 2D Ericksen-Leslie system in 3D:




u̇ − µ∆u � −∇p − ∂
∂x j

(
∂F
∂nx j
· ∇n

)
+ F + f , nx j :�

∂
∂x j

n

Jn̈ − 2qn + h � g +G, ‖n‖ � 1, divu � 0, ˙ :� ∂
∂t + u · ∇,

u Eulerian (spatial) velocity, n director field, constant µ > 0 viscosity coefficient,
constant J > 0moment of inertia of the molecule, F(x , t) andG(x , t) given external
forces, f models dissipative part of the stress tensor, g models dissipative part of
intrinsic body force f , g depend on u, n, and their derivatives. F(n,∇n) �

K1n · curln +
1
2

(
K11(divn)2 + K22(n · curln)2 + K33‖n × curln‖2

)
.

Osseen-Zöcher-Frank free energy

Study non-dissipative regime, i.e., g � 0, f � 0. Nematic
de f
�⇒ K1 � 0. For simplicity,

study the one-constant approximation, i.e.,

K11 � K22 � K33 �: K > 0.
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With all these hypotheses, the Ericken-Leslie system becomes

u̇ − µ∆u � −∇p − (Knx j · ∇n)x j + F, divu � 0, (1)

J ν̇ � −K∆n × n +G, (2)

ṅ � ν × n, (3)

with unknowns u, ν, n. Define ν � n × ṅ in Ericksen-Leslie system and show
directly that it implies the new first order system (1)–(3).

Conversely, if the initial conditions of the Ericksen-Leslie system satisfy the identities

‖n(x , 0)‖ � 1, n(x , 0) ⊥ ν(x , 0),

at time t � 0, then for any t > 0 we have

‖n‖ ≡ 1, ν � n × ṅ, 2q � n · h − J‖ν‖2,

and (1)–(3) turns into Ericksen-Leslie system. Thus, under these hypotheses on
the initial conditions, the first order system (1), (2), (3) is equivalent to the original
Ericksen-Leslie system.
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Flow in R3 is called two-dimensional if all unknowns in the Ericksen-Leslie system
are independent of the third coordinate x3; can suppose that they are all defined on
a plane (x1, x2). Initial conditions:

u(0, x) � u0, ν(0, x) � ν0, n(0, x) � n0. (4)

Boundary conditions (if the domain is Ω ⊂ R2):

u��∂Ω � 0, n − n1��∂Ω � 0, ν |∂Ω � 0 for any t > 0, (5)

where n1 is a given constant vector field on Ω × R.
Function spaces in the periodic case:
QT :� (0, T) × T, T :� R2/Z2

L2(T) :�
{
v : T→ R3 |

∫
T
‖v‖2d2x < ∞

}
;

Wm
2 (T) is the Sobolev space of functions on T having m distributional derivatives

in L2(T);
Sol(T) :� {v : T→ R3 | v ∈ C∞(T), divv � 0};
Sol(QT) :� {v ∈ C∞(QT) | v(t , ·) ∈ Sol(T), ∀t ∈ (0, T)};
Sol2(T) is the closure of Sol(T) in the norm L2(T);
Solm

2 (T) is the closure of Sol(T) in the norm Wm
2 (T).
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(u, ν, n,∇p) strong solution of problem (1)–(4) in the domain QT if:
(i) u time-dependent vector field in L2((0, T); Sol22(T), ut ∈ L2(QT);
(ii) ν is a vector field in L∞((0, T);W1

2 (T)), νt ∈ L∞((0, T); L2(T));
(iii) n is a vector field in L∞((0, T);W2

2 (T)), nt ∈ L∞((0, T);W1
2 (T));

(iv) ∇p ∈ L2(QT);
(v) u, n, ν satisfy the initial conditions (4), i.e., (u, n, ν) ⇀ (u0, n0, ν0) weakly in
L2(T) as t → 0;
(vi) equations (1)–(3) hold almost everywhere.

Function spaces in the bounded domain case:
QT :� (0, T) ×Ω, Ω Lipschitz boundary
◦

Sol (Ω) :� {v : Ω→ R3 such as v ∈ C∞0 Ω), divv � 0};
◦

Sol (QT) :� {v ∈ C∞(QT) : ∀t v(t , ·) ∈
◦

Sol (Ω)};
◦

Solm
2 (Ω) is the closure of

◦

Sol (Ω) in the norm Wm
2 (Ω)

◦

Wm
2 (Ω) is the subspace of Wm

2 (Ω) with zero trace.
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(u, ν, n,∇p) is a strong solution of problem (1)–(5) in QT if:

(i) u ∈ L2((0, T);
◦

Sol12 (Ω)) ∩ L2((0, T);W2
2 (Ω)), ut ∈ L2(QT);

(ii) ν is a vector field in L∞((0, T);
◦

W1
2 (Ω)), νt ∈ L∞((0, T); L2(Ω));

(iii) n − n1 is a vector field in L∞((0, T);
◦

W1
2 (Ω)) ∩ L2((0, T);W2

2 (Ω)), where n1
is a given constant vector field, nt ∈ L∞((0, T);W1

2 (Ω));
(iv) ∇p ∈ L2(QT);
(v) u, n, ν satisfy initial conditions (4), i.e., (u, n, ν) ⇀ (u0, n0, ν0) weakly in
L2(Ω);
(vi)equations (1)–(3) hold almost everywhere.

Periodic case: Let F ∈ L2((0, T);W1
2 (T)), G ∈ L1((0, T);W2

2 (T)); F3 � 0. Sup-
pose u0 ∈ Sol22(T), ∆ν0 ∈ L2(T), ∆n0 ∈ W1

2 (T). Then there is a T > 0 such that
the solution to problem (1)–(4) exists and is unique (equality almost everywhere).
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Bounded domain case: Suppose n3 � 0, i.e., n � (cos θ, sin θ, 0), ν � (0, 0, ν),
θ new unknown function. Ericksen-Leslie system is:

u̇ − µ∆u � −∇

(
p +

K
2
‖∇θ‖2

)
− K∆θ∇θ, divu � 0, (6)

J ν̇ � −K∆θ, (7)
θ̇ � ν (8)

with boundary and initial conditions

u��∂Ω � 0, θ − θ1��∂Ω � 0, ν |∂Ω � 0 for any t > 0, (9)

u(0, x) � u0(x), ν(0, x) � ν0(x), θ(0, x) � θ0(x). (10)

Ω Lipschitz domain. For almost all x ∈ ∂Ω, ∂Ω is graph of a C2-function in some
neighborhood of x. Let F ∈ L2((0, T);W1

2 (Ω)),G � (0, 0,G3) ∈ L1((0, T);W2
2 (Ω)),

F3 � 0, and θ0 ∈ W3
2 (Ω), ν0 ∈ W2

2 (Ω), u0 ∈
◦

Sol12 (Ω) ∩W2
2 (Ω). Let ∆u0��∂Ω � 0

and assume that for some d > 0 we have

θ0(x) � θ1 ≡ const , ν0(x) � 0 if dist(x , ∂Ω) < d.

Then the solution to (6)–(10) exists for some T > 0 and is unique.
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Finite propagation speed

The following theorem is true in both the periodic and the bounded domain case.

Consider the equations (2)–(4) and suppose that w i j :� u j
xi

+ u i
x j

for some 1 <
α ≤ ∞ satisfy

‖esssupx |w
i j (x , t) | ‖Lα(0,T) ≤ M/d

and ‖u‖ is bounded by a constant m. Assume also that ∇n0 and ν0 vanish for
‖x − x0‖ < r. Then ∇n and ν are equal to zero for

‖x − x0‖ < r − (m +max{1, K/J})t , Mt
α
α−1 ≤

1
2
.
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Blow up of smooth solutions for isentropic viscous liquid crystals
T.S. Ratiu and Olga Rozanova

The full 3D equations of isentropic viscous liquid crystals are:

∂tρ + div(ρu) � 0, (11)

∂t (ρu) + Div(ρu ⊗ u) + ∇p � Div(σR) + Div(σD), (12)

D
Dt

ni � Ωkink + λ(δil − ninl)dkAkl +
hi
β
, (13)

p � p(ρ), (14)

(ρ, u, n)���t�0 � (ρ0, u0, n0), n0 ∈ S2 (15)

Equations are in R×R3 (Landau-Lifshitz, Vol 7, 3rd ed.); conservation of mass, lin-
ear momentum, and n ∈ S2. ρ is the fluid density, p is a pressure, u � (u1, u2, u3)T

is the spatial (Eulerian) velocity, n � (n1, n2, n3)T is the orientational order param-
eter representing the macroscopic average of the molecular directors.
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D
Dt :�

∂
∂t + (u ,∇) is the material derivative

div(a) :� ∂ai
∂xi

is the usual divergence of a vector field (a1, a2, a3)T

Div(τ)i :�
∂τĳ
∂xj

is the divergence of a 2-tensor (τi j)

A :� 1
2(∇u + (∇u)T) is the symmetric part of strain rate

Ω :� 1
2(∇u− (∇u)T) � curl u is the skew-symmetric part of the strain rate; vorticity.

Oseen-Zöcher-Frank free energy the sum of the splay, the bend, and the twist, i.e,

W (ρ, d) � K1
1
2

(divn)2 + K2
1
2
‖n × (curln)‖2 + K3

1
2

(n · curln)2 ≥ 0,

λ, β ∈ R are constants, Ki ≥ 0, i � 1, 2, 3, are functions of ρ. The vector field h in
(13) is defined by

h :� H − (n,H)n, Hi :� ∂kπki −
∂W
∂ni

, πki :�
∂W

∂(∂kni)
.

Let us note that (13) implies ‖n‖ � 1 for t > 0 if ‖n0‖ � 1.

IMPA, Mathematical Physics Seminar, November 17, 2015

66



Reactive (non-dissipative) symmetrized part of the stress tensor:

σR
ik � −

1
2

(nihk +nkhi)−
1
2

(πkl∂inl +πil∂knl)−
1
2
∂l[(πik −πki)nl −πklni −πilnk].

Dissipative symmetrized part of the stress tensor:

σD
ij � µ1Ai j + µ2(Aikdkd j + A jkdidk) + µ3δi jAkk

+µ4did jdkdlAkl + µ5[δi jdkdlAkl + did jAkk].
Coefficients µ1, ..., µ5 may depend on ρ.

Total mass: m(t) �
∫
R3
ρ dx ,

Total linear momentum: P(t) �
∫
R3
ρu dx ,

Total energy: E(t) � 1
2
∫
R3

ρ‖u‖2 dx+
∫
R3
Ψ(ρ) dx+

∫
R3

W (ρ, n) dx � Ek (t)+Ei (t)+

Ed (t) ≥ 0, kinetic, internal, deformational energy. Ψ(ρ) �
ρ∫
0

p′(ξ)
ξ dξ ≥ 0.

Assume that there exists γ > 1 such that

Ψ(ρ) ≥ Aργ , A � const > 0. (16)
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A solution (ρ, u, n) to the Cauchy problem (11)–(15) belongs to the class K if the
solution is classical, ρ ≥ 0, u ∈ H1(R3), the mass m(t), linear momentum P(t),
and total energy are finite for all t ≥ 0 for which the solution exists, and, m(t) �

m � const, P(t) � P � const.

Thus, if the solution belongs to the class K, then

ρ ∈ L1(R3), Ψ(ρ) ∈ L1(R3),
√
ρu ∈ L2(R3), W ∈ L1(R3).

Energy decay along smooth solutions

d
dt

E(t) � −
∫
R3

(
σD

ikAik +
‖h‖2

β

)
dx.

Assume the following inequalities

β > 0, µ1 > 0, µ1 + µ3 ≥ 0, µ4 ≥ 0, θ :�
µ1
2
− 2|µ2 | − 4|µ5 | > 0. (17)

Then there exists a constant θ > 0 such that
d
dt

E(t) ≤ − θ
∫
R3

|Du |2 dx.

IMPA, Mathematical Physics Seminar, November 17, 2015

68



Assume that for γ ≥ 6
5 we haveΨ(ρ) ≥ Aργ for some constant A > 0. If ‖P‖ , 0,

then there exists C > 0 such that for the solutions from the class K the following
inequality holds: ∫

R3

|Du |2 dx ≥ C Ei (t)
−

1
3(γ−1) .

This leads to the following theorem:

Suppose γ ≥ 6
5, ‖P‖ , 0, and inequalities (16), (17). Then there is no global in

time solution to the Cauchy problem (11)–(15) in the class K.

The proof shows that the blow-up is due to the presence of the viscosity term. The
nature of loss of smoothness is similar to the case of the compressible Navier-
Stokes equation and the anisotropic features do not influence this phenomenon.
Thus, the addition of liquid crystal degrees of freedom does not regularize the
Navier-Stokes equations. From experimental data it seems that blow-up is related
to high temperature.
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